Other Analysis and Imaging Methods

Developing innovative methods to analyse a sample (such as PIXE, fs-LIBS, LIDAR, ultrafast electron diffraction or laser spectroscopy) or to image non-biological samples (e.g. ion imaging and velocity mapping methods)

CLF (Oxfordshire, UK)

The CLF offers access to five unique laser facilities for multi-disciplinary research. VULCAN operates two target areas: a high energy 1 PW capability and a synchronised 100 TW & 2 kJ/ns capability, both with very flexible configurations for research in high energy density science. GEMINI offers a unique synchronised dual beam capability with 0.5 PW beams operating at one shot every 20 seconds, focussing on plasma accelerators and the generation and application of secondary sources. ARTEMIS has three beamlines utilising HHG, at 1 kHz/800 nm/200 eV and 100 kHz/1700 nm/1 keV (due online shortly), with a wide suite of end stations for pump-probe experiments in ultrafast XUV science. ULTRA is an ultrafast pump-probe laser spectroscopy facility, combining laser, detector and sample manipulation technology to probe ultrafast molecular dynamics. OCTOPUS: a suite of imaging and laser trapping capabilities, such as super-resolution (including cryogenic), confocal, and light sheet microscopy, single molecule imaging/tracking, and focused ion beam SEM.

CLPU (Salamanca, Spain)

CLPU operates VEGA, a multi Terawatt laser system composed by three independent and synchronised 30 fs long Ti:Sa based-laser pulses: VEGA-3 of 1 PW (at 1Hz), VEGA- 2 of 200 TW and VEGA-1 of 20 TW (both up to 10 Hz). Besides its architecture, the uniqueness of VEGA is that it is a petawatt-class laser system of high-repetition rate.

FERMI (Trieste, Italy)

Elettra Sincrotrone Trieste is a multidisciplinary international laboratory of excellence, specialized in generating high quality synchrotron and free-electron laser light and using it in materials science

ICFO (Barcelona, Spain)

ICFO aims to advance the very limits of knowledge in Photonics, namely the science and technology of harnessing Light for fundamental physics, chemistry, material science, and applications in biological and medical research. Within ICFO, the SLN lab is equipped with cutting edge microscopy techniques and performs continuous development to provide unique features. The research programs cover a wide range of applications, from super resolution to mesoscopic levels. We collaborate with industry, hospitals and research centres. Our systems are available to all type of end-users. We provide training that can be accommodated to any type of user.

LACUS (Lausanne, Switzerland)

LACUS offers various instruments for the investigation of matter (molecules, solutions, proteins, solids and nanosystems) in out-of-equilibrium conditions. Our instruments cover a broad range of observables, ranging from spectroscopic probes in the UV-visible range to electron diffraction and imaging in various sample environments, and covering a temporal range from femtoseconds to nanoseconds.

LLAMS (Amsterdam, Netherlands)

LLAMS develops new techniques and tools, including ultra-precise spectroscopy, to study the interaction of (laser) light and matter. Looking at systems ranging from atoms and molecules to living cells and tissues, the focus is on advancing understanding of both molecular physics and living systems.

LLC (Lund, Sweden)

Located in Lund, in the south of Sweden, the LLC is the largest unit in the Scandinavian countries in the field of lasers and their use in spectroscopy, diagnostics and analysis. Its research programme ranges from atomic physics and attoscience to medical diagnostics and treatment, from fundamental quantum information and single-molecule spectroscopy to applied laser diagnostics of industrial processes.

LOA (Palaiseau, France)

LOA has played a pioneering role in the development of ultrafast laser-matter science at high intensities and related new concept of ultrafast lasers and secondary sources (electrons, protons, EUV, X-ray and gamma-rays, THz). LOA was one of the founders of the LASERLAB community. LOA develops cutting-edge advanced programs to answer scientific and societal challenges.

LP3 (Marseille, France)

LP3 is a multidisciplinary academic laboratory of excellence. Its major activities focus on: i) generation of secondary sources such as hard X-ray by laser-induced plasma technology ii) fundamentals and technological research of laser-matter interactions and iii) development of laser-based processes. The main applications are related to laser structuration and fabrication with major outcomes in photonics, microelectronics, medicine and laser-based diagnostics.

ULF-FORTH (Heraklion, Greece)

The Ultraviolet Laser Facility (ULF-FORTH) is a multi-disciplinary laboratory dedicated to laser-based science. It is the major laser research facility in Greece. ULF-FORTH combines state-of-the-art experimental facilities with a rich spectrum of research activities and expertise including Atomic and Optical physics, Molecular physics and Chemical dynamics, laser-materials interactions, laser applications and techniques in Biomedicine and in Cultural Heritage.

VULRC (Vilnius, Lithuania)

Vilnius University Laser Research Center (VULRC) hosts a number of laboratories dedicated to fundamental and applied laser research. The research topics include but are not limited to laser micromachining, nanophotonics, standardized metrology of optical components, development of novel laser and parametric sources, investigation of nonlinear phenomena in the NIR and MIR spectral ranges, generation and application of broadband terahertz pulses, time-resolved spectroscopy, nonlinear microscopy and laser induced breakdown spectroscopy.