Materials Under Radiation

Characterizing radiation damages and studying the underlying microscopic ablation mechanisms.

ICFO (Barcelona, Spain)

ICFO aims to advance the very limits of knowledge in Photonics, namely the science and technology of harnessing Light for fundamental physics, chemistry, material science, and applications in biological and medical research. Within ICFO, the SLN lab is equipped with cutting edge microscopy techniques and performs continuous development to provide unique features. The research programs cover a wide range of applications, from super resolution to mesoscopic levels. We collaborate with industry, hospitals and research centres. Our systems are available to all type of end-users. We provide training that can be accommodated to any type of user.

CELIA (Bordeaux, France)

CELIA is a centre of excellence in lasers and their interaction with matter. Research is performed on laser development, ultra-short intense laser matter interactions and applications, from the physics of hot dense plasmas to laser-molecule or laser-atom interactions. 3 state-of-the art laser drivers based on Ti:sapphire and Yb:fiber feed 9 fully-equipped end-stations including secondary XUV and X-ray sources.

LULI (Coordinator, Palaiseau, France)

LULI operates two multi-beam laser facilities: APOLLON, a Ti:Sapphire shot-per-minute facility offering an exceptional multi-PW peak power, and LULI2000, a highly energetic Nd-glass laser. APOLLON allows exploring high-field physics and generating extreme particle and radiation beams for applications. LULI2000 couples high-energy and high-power laser pulses onto a target together with external high-amplitude pulsed magnetic fields for high-energy-density physics investigation.

CLPU (Salamanca, Spain)

CLPU operates VEGA, a multi Terawatt laser system composed by three independent and synchronised 30 fs long Ti:Sa based-laser pulses: VEGA-3 of 1 PW (at 1Hz), VEGA- 2 of 200 TW and VEGA-1 of 20 TW (both up to 10 Hz). Besides its architecture, the uniqueness of VEGA is that it is a petawatt-class laser system of high-repetition rate.

LIDYL (Saclay, France)

Located in Saclay, France, LIDYL is a fundamental research laboratory whose activities focus on radiation-matter interaction and applications. LIDYL's research programs cover the study of both electronic and nuclear dynamics, in the gas and condensed phases, from the simplest atomic and molecular systems to the most complex ones (biomolecules and nano-objects) and to laser-created plasmas using high-intensity fs lasers.

LP3 (Marseille, France)

LP3 is a multidisciplinary academic laboratory of excellence. Its major activities focus on: i) generation of secondary sources such as hard X-ray by laser-induced plasma technology ii) fundamentals and technological research of laser-matter interactions and iii) development of laser-based processes. The main applications are related to laser structuration and fabrication with major outcomes in photonics, microelectronics, medicine and laser-based diagnostics.

LENS (Florence, Italy)

LENS, the European Laboratory for Non-Linear Spectroscopy, is a center of excellence at the University of Florence. Research interests include photonics, biophysics, chemistry and atomic physics. Three different main research areas (BIOPHOTONICS, PHOTONIC MATERIALS, ATOMIC PHYSICS) and more than twenty research topics, corresponding to active laboratories, are presently running.

CLF (Oxfordshire, UK)

The CLF offers access to five unique laser facilities for multi-disciplinary research. VULCAN operates two target areas: a high energy 1 PW capability and a synchronised 100 TW & 2 kJ/ns capability, both with very flexible configurations for research in high energy density science. GEMINI offers a unique synchronised dual beam capability with 0.5 PW beams operating at one shot every 20 seconds, focussing on plasma accelerators and the generation and application of secondary sources. ARTEMIS has three beamlines utilising HHG, at 1 kHz/800 nm/200 eV and 100 kHz/1700 nm/1 keV (due online shortly), with a wide suite of end stations for pump-probe experiments in ultrafast XUV science. ULTRA is an ultrafast pump-probe laser spectroscopy facility, combining laser, detector and sample manipulation technology to probe ultrafast molecular dynamics. OCTOPUS: a suite of imaging and laser trapping capabilities, such as super-resolution (including cryogenic), confocal, and light sheet microscopy, single molecule imaging/tracking, and focused ion beam SEM.

HILASE (Dolni Břežany, Czech Republic)

HiLASE operates two diode-pumped Yb:YAG solid state laser facilities: Bivoj, delivering over 1 kW of average power in 105 J, 10 ns pulses at 10 Hz, for laser shock peening and ion generation, and Perla, a high average power laser platform generating < 2 ps pulses in broad spectral region from 206 nm to 3 microns for laser processing.

FERMI (Trieste, Italy)

Elettra Sincrotrone Trieste is a multidisciplinary international laboratory of excellence, specialized in generating high quality synchrotron and free-electron laser light and using it in materials science

LACUS (Lausanne, Switzerland)

LACUS offers various instruments for the investigation of matter (molecules, solutions, proteins, solids and nanosystems) in out-of-equilibrium conditions. Our instruments cover a broad range of observables, ranging from spectroscopic probes in the UV-visible range to electron diffraction and imaging in various sample environments, and covering a temporal range from femtoseconds to nanoseconds.