Harmonic Sources and Attosecond Pulses

Studying and optimizing the generation of high-order laser harmonics and attosecond pulses, from gases or solids.

CELIA (Bordeaux, France)

CELIA is a centre of excellence in lasers and their interaction with matter. Research is performed on laser development, ultra-short intense laser matter interactions and applications, from the physics of hot dense plasmas to laser-molecule or laser-atom interactions. 3 state-of-the art laser drivers based on Ti:sapphire and Yb:fiber feed 9 fully-equipped end-stations including secondary XUV and X-ray sources.

CLF (Oxfordshire, UK)

The CLF offers access to five unique laser facilities for multi-disciplinary research. VULCAN operates two target areas: a high energy 1 PW capability and a synchronised 100 TW & 2 kJ/ns capability, both with very flexible configurations for research in high energy density science. GEMINI offers a unique synchronised dual beam capability with 0.5 PW beams operating at one shot every 20 seconds, focussing on plasma accelerators and the generation and application of secondary sources. ARTEMIS has three beamlines utilising HHG, at 1 kHz/800 nm/200 eV and 100 kHz/1700 nm/1 keV (due online shortly), with a wide suite of end stations for pump-probe experiments in ultrafast XUV science. ULTRA is an ultrafast pump-probe laser spectroscopy facility, combining laser, detector and sample manipulation technology to probe ultrafast molecular dynamics. OCTOPUS: a suite of imaging and laser trapping capabilities, such as super-resolution (including cryogenic), confocal, and light sheet microscopy, single molecule imaging/tracking, and focused ion beam SEM.

CLPU (Salamanca, Spain)

CLPU operates VEGA, a multi Terawatt laser system composed by three independent and synchronised 30 fs long Ti:Sa based-laser pulses: VEGA-3 of 1 PW (at 1Hz), VEGA- 2 of 200 TW and VEGA-1 of 20 TW (both up to 10 Hz). Besides its architecture, the uniqueness of VEGA is that it is a petawatt-class laser system of high-repetition rate.

CUSBO (Milan, Italy)

CUSBO covers a broad range of activities of interdisciplinary nature. Several unique state of the art sources provide few-cycle light pulses, either widely-tunable or of high peak power seeding attosecond beamlines, for pump-probe experiments. Advanced laser workstations mostly based on time-resolved measurements are also applied to non-invasive clinical diagnostics, biological imaging, and non-destructive analysis of food and cultural heritage.

FERMI (Trieste, Italy)

Elettra Sincrotrone Trieste is a multidisciplinary international laboratory of excellence, specialized in generating high quality synchrotron and free-electron laser light and using it in materials science

HIJ (Jena, Germany)

The Few-Cycle-Laser laboratory is operating various laser sources for the investigation of strong field and attosecond laser physics. Ultrashort laser pulses in different spectral regions are available. POLARIS is an all-diode pumped laser system operated at HI-Jena and FSU Jena, currently reaching the highest peak power worldwide (170 TW on target) for such a system. Delivering <100-fs pulses at a rep-rate of 1/50 Hz with up to 17 J energy and extreme temporal contrast, POLARIS is an indispensable tool for our research program on laser-driven particle acceleration.

LACUS (Lausanne, Switzerland)

LACUS offers various instruments for the investigation of matter (molecules, solutions, proteins, solids and nanosystems) in out-of-equilibrium conditions. Our instruments cover a broad range of observables, ranging from spectroscopic probes in the UV-visible range to electron diffraction and imaging in various sample environments, and covering a temporal range from femtoseconds to nanoseconds.

LENS (Florence, Italy)

LENS, the European Laboratory for Non-Linear Spectroscopy, is a center of excellence at the University of Florence. Research interests include photonics, biophysics, chemistry and atomic physics. Three different main research areas (BIOPHOTONICS, PHOTONIC MATERIALS, ATOMIC PHYSICS) and more than twenty research topics, corresponding to active laboratories, are presently running.

LIDYL (Saclay, France)

Located in Saclay, France, LIDYL is a fundamental research laboratory whose activities focus on radiation-matter interaction and applications. LIDYL's research programs cover the study of both electronic and nuclear dynamics, in the gas and condensed phases, from the simplest atomic and molecular systems to the most complex ones (biomolecules and nano-objects) and to laser-created plasmas using high-intensity fs lasers.

LLAMS (Amsterdam, Netherlands)

LLAMS develops new techniques and tools, including ultra-precise spectroscopy, to study the interaction of (laser) light and matter. Looking at systems ranging from atoms and molecules to living cells and tissues, the focus is on advancing understanding of both molecular physics and living systems.

LLC (Lund, Sweden)

Located in Lund, in the south of Sweden, the LLC is the largest unit in the Scandinavian countries in the field of lasers and their use in spectroscopy, diagnostics and analysis. Its research programme ranges from atomic physics and attoscience to medical diagnostics and treatment, from fundamental quantum information and single-molecule spectroscopy to applied laser diagnostics of industrial processes.

LOA (Palaiseau, France)

LOA has played a pioneering role in the development of ultrafast laser-matter science at high intensities and related new concept of ultrafast lasers and secondary sources (electrons, protons, EUV, X-ray and gamma-rays, THz). LOA was one of the founders of the LASERLAB community. LOA develops cutting-edge advanced programs to answer scientific and societal challenges.

LULI (Coordinator, Palaiseau, France)

LULI operates two multi-beam laser facilities: APOLLON, a Ti:Sapphire shot-per-minute facility offering an exceptional multi-PW peak power, and LULI2000, a highly energetic Nd-glass laser. APOLLON allows exploring high-field physics and generating extreme particle and radiation beams for applications. LULI2000 couples high-energy and high-power laser pulses onto a target together with external high-amplitude pulsed magnetic fields for high-energy-density physics investigation.

MBI (Berlin, Germany)

MBI conducts basic research in nonlinear optics, ultrafast dynamics, the interaction of matter with laser light, and into the resulting applications. It develops and utilizes ultrashort and ultrafast lasers and laser-based short-pulse light sources in a wide spectral range in conjunction with nonlinear spectroscopy methods, as well as combining lasers with x-ray pulses from free electron lasers and synchrotrons.

ULF-FORTH (Heraklion, Greece)

The Ultraviolet Laser Facility (ULF-FORTH) is a multi-disciplinary laboratory dedicated to laser-based science. It is the major laser research facility in Greece. ULF-FORTH combines state-of-the-art experimental facilities with a rich spectrum of research activities and expertise including Atomic and Optical physics, Molecular physics and Chemical dynamics, laser-materials interactions, laser applications and techniques in Biomedicine and in Cultural Heritage.

VULRC (Vilnius, Lithuania)

Vilnius University Laser Research Center (VULRC) hosts a number of laboratories dedicated to fundamental and applied laser research. The research topics include but are not limited to laser micromachining, nanophotonics, standardized metrology of optical components, development of novel laser and parametric sources, investigation of nonlinear phenomena in the NIR and MIR spectral ranges, generation and application of broadband terahertz pulses, time-resolved spectroscopy, nonlinear microscopy and laser induced breakdown spectroscopy.