Electromagnetic Pulses

Studying EMP generation and developing mitigation strategies

CELIA (Bordeaux, France)

CELIA is a centre of excellence in lasers and their interaction with matter. Research is performed on laser development, ultra-short intense laser matter interactions and applications, from the physics of hot dense plasmas to laser-molecule or laser-atom interactions. 3 state-of-the art laser drivers based on Ti:sapphire and Yb:fiber feed 9 fully-equipped end-stations including secondary XUV and X-ray sources.

CLF (Oxfordshire, UK)

The CLF offers access to five unique laser facilities for multi-disciplinary research. VULCAN operates two target areas: a high energy 1 PW capability and a synchronised 100 TW & 2 kJ/ns capability, both with very flexible configurations for research in high energy density science. GEMINI offers a unique synchronised dual beam capability with 0.5 PW beams operating at one shot every 20 seconds, focussing on plasma accelerators and the generation and application of secondary sources. ARTEMIS has three beamlines utilising HHG, at 1 kHz/800 nm/200 eV and 100 kHz/1700 nm/1 keV (due online shortly), with a wide suite of end stations for pump-probe experiments in ultrafast XUV science. ULTRA is an ultrafast pump-probe laser spectroscopy facility, combining laser, detector and sample manipulation technology to probe ultrafast molecular dynamics. OCTOPUS: a suite of imaging and laser trapping capabilities, such as super-resolution (including cryogenic), confocal, and light sheet microscopy, single molecule imaging/tracking, and focused ion beam SEM.

CLPU (Salamanca, Spain)

CLPU operates VEGA, a multi Terawatt laser system composed by three independent and synchronised 30 fs long Ti:Sa based-laser pulses: VEGA-3 of 1 PW (at 1Hz), VEGA- 2 of 200 TW and VEGA-1 of 20 TW (both up to 10 Hz). Besides its architecture, the uniqueness of VEGA is that it is a petawatt-class laser system of high-repetition rate.

GSI (Darmstadt, Germany)

GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany is an accelerator laboratory hosting PHELIX (Petawatt High-Energy Laser for Ion eXperiments), both for combined laser/accelerator and standalone laser experiments. The PHELIX laser at GSI presently permits two types of operation: Pulses of a duration between 0.5 ns and 20 ns with a widely variable pulse shape and energies up to 1 kJ, and 0.5 ps short-pulse petawatt-class operation. One high-energy and one low-energy laser stand-alone target area are available, as well as a target area for combined laser / linear accelerator ion beam experiments with a dedicated 100 TW proton acceleration beamline. A new target area dedicated to combined laser / synchrotron ion beam experiments will be available by 2021.

LACUS (Lausanne, Switzerland)

LACUS offers various instruments for the investigation of matter (molecules, solutions, proteins, solids and nanosystems) in out-of-equilibrium conditions. Our instruments cover a broad range of observables, ranging from spectroscopic probes in the UV-visible range to electron diffraction and imaging in various sample environments, and covering a temporal range from femtoseconds to nanoseconds.

LULI (Coordinator, Palaiseau, France)

LULI operates two multi-beam laser facilities: APOLLON, a Ti:Sapphire shot-per-minute facility offering an exceptional multi-PW peak power, and LULI2000, a highly energetic Nd-glass laser. APOLLON allows exploring high-field physics and generating extreme particle and radiation beams for applications. LULI2000 couples high-energy and high-power laser pulses onto a target together with external high-amplitude pulsed magnetic fields for high-energy-density physics investigation.

PALS (Prague, Czech Republic)

PALS operates a kJ-class photodissociation iodine laser system at a wavelength of 1315 nm and a pulse duration of 350 ps. This main laser beam is precisely synchronized with a femtosecond Ti:sapphire laser system (up to 1 J, 40 fs) used mainly as a probe beam for plasma parameter measurements.