

LASERLAB-EUROPE

The Integrated Initiative of European Laser Research Infrastructures IV

Grant Agreement number: 654148

Work package 2 – The Virtual Laser Infrastructure

Deliverable D2.2 Final report on the Virtual Laser Infrastructure

Lead Beneficiary: 7 - FVB

Due date: Month 48

Date of delivery: Month 48

Project webpage: www.laserlab-europe.eu

Deliverable Type	
R = Report	R
DEM = Demonstrator, pilot, prototype, plan designs	
DEC = Websites, patents filing, press & media actions, videos, etc.	
OTHER = Software, technical diagram, etc.	
Dissemination Level	
PU = Public, fully open, e.g. web	PU
CO = Confidential, restricted under conditions set out in Model Grant Agreement	
CI = Classified, information as referred to in Commission Decision 2001/844/EC	

1 Objectives

The aim of Work Package 2 is to present Laserlab-Europe as a "Virtual Laser Infrastructure", reflecting the integrated offer of the Consortium. The approach maps the essential organisational and networking functions onto a common internet platform, allowing the network to act and appear as a functional unit with respect to all relevant activities like management, networking, access, and research. The Laserlab-Europe web platform provides the technological basis for vital functions such as interactions with users, especially to manage the submission and evaluation of proposals for experimental projects in the framework of the transnational access programme, external communication with all interested communities and the public through the web presence of the Consortium, and all intra-consortium management of data.

One of the most important aspects is the dynamic evolution of this structure, i.e. the ability to quickly react to new requirements regarding new or altered projects, services, communication channels, etc. This is ensured by a professional and flexible design, central maintenance of the hard- and software, and professional full-time staff for maintenance, implementation of changes and new services.

2 Task 1 – Online Access Management System

Task leader: FVB-MBI, in close cooperation with the Access Board.

The Access Activity is organised as a joint activity among all participating infrastructures, using a common advertising platform on the internet, a common call for proposals, a unified proposal processing scheme, a common external Selection Panel, and a common external pool of referees.

The online Access Proposal Management System is based on software developed specifically for this purpose, involving a complex sequence of information exchange and processing as well as clearly defined "groups" with individual information access rights and restrictions (Users, Infrastructures, Selection Panel, Referees). Linked to the Access Proposal Management System are an online access reporting database, which collects the relevant information on access projects for all reporting and documentation purposes, a database for publications resulting from access projects, and the Laserlab-Europe User Questionnaire system, which is used for monitoring and quality assessment of the access programme as a whole and of the services provided by the individual facilities. (Assessment of the feedback from users is made within WP6).

The systems have been implemented in the predecessor project Laserlab-Europe and are highly appreciated among the participants of the project. Therefore, only minor adjustments and upgrades were implemented during the present project. The new access providing facilities have been included in the system from the start of the project. Maintenance of the system is taking place regularly. Regular updates of the underlying server operation programmes (open source operating system (Debian GNU/Linux) and other software) were performed, and adjustments of the proposal management system were made in order to improve the usability for applicants and project partners. Tools for analysis and statistical evaluations as well as automatic display routines for access-related documentation were implemented or improved.

The system is hosted and maintained at FVB-MBI with support from an external IT service company.

Fig. 1: Online Access Proposal Management System – start page for applicants

Fig. 2: Online Access Proposal Management System – administrative view of the internal features

3 Task 2 – Content Management System

A Content Management System (CMS) is used for the Laserlab-Europe website, which allows for remote contribution to the creation of web pages and provision of information by all participants, as they do not need to be familiar with any programming languages for internet publishing and design. The CMS, based on the open source programs Zope and Plone, is used for decentralised authoring, editing and publishing of information on the external and internal project web pages and for the provision of workflow functions for organizing and representing project-related processes. Most project activities like networking, access organisation and the overall management, controlling and administration of the network as a whole have dedicated intranet sections.

Maintenance and update of the CMS as a central feature for the entire network is provided by the Laserlab office and its staff. Reading and writing access to the external and internal

project web pages is granted to all project participants. Throughout the duration of the project, the system has been updated to be compatible with new developments in the internet environment, e.g. new versions and features of browsers, and complemental features for the CMS have been installed to improve its security (e.g. upgrade to secure communications protocol) and usability. A major update provides for usability of the webpage and an updated layout.

Information for visitors and clients on access services, on scientific and structural details of Laserlab-Europe and its activities in joint research and networking, for example on training possibilities and workshops, as well as on the de-centralised partner facilities is presented in form of a classical world wide web (www) presence (www.laserlab-europe.eu), set up with the Content Management System. The web presence helps to promote the visibility of the Laserlab Consortium as European point of contact for laser-based research and to increase the general awareness of the achievements and opportunities offered by Laserlab-Europe. The web presence addresses a very broad audience, from the general public, to fellow scientists, potential users of laser-based tools in very diverse scientific fields, and to the regional, national and European public organisations.

Special emphasis is put on offering access to the scientific community as a unified and joint activity among the partners, including external refereeing and selection processes. In addition, previous access user projects and their scientific output as well as "access success stories" are publicised and documented on the project's webpage. This is of particular interest for potential users, who have access to a single portal allowing them to learn about the technical capacities of the various Laserlab infrastructures and to find examples of successful access projects.

The initial updated presentation of the project, including new participants, new joint research programmes and new access opportunities, was available on the public webpage at the start of project. All information on activities and results is continuously updated throughout the duration of the project in order to address new communities and improve the usability and value for external interested parties.

Fig. 3: Public webpage implemented with CMS Zope/Plone by FVB-MBI.

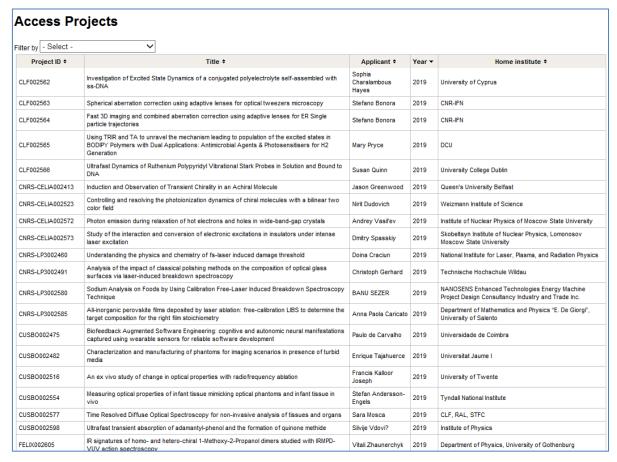


Fig. 4: List of access projects performed at Laserlab facilities.

Project ID +	Title +	Authors +	Reference +	Year +	Type of Publication	DOI or web address
LLC002276	Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics	Dacasa, H., H. Coudert-Alteirac, C. Guo, E. Kueny, F. Campi, J. Lahl, J. Peschel, H. Wikmark, B. Major, E. Malm, D. Ali, K. Varjú, C. L. Arnold, G. Dovillaire, P. Johnsson, A. L'Huillier, S. Maclot, P. Rudawski and P. Zeitoun	Opt. Express 27, 2656	2019	Scientific Journal	https://doi.org/10.1364/0E.27.002656
ULF-FORTH002225	Two-color studies of CH3Br excitation dynamics with MPI and slice imaging	Haflidason, A., P. Glodic, G. Koumarianou, P.C. Samartzis and A. Kvaran	Phys. Chem. Chem. Phys. 21, 10391	2019	Scientific Journal	https://doi.org/10.1039/c8cp06376a
LLAMS002300	The Evaluation of Time-Resolved Raman Spectroscopy for the Suppression of Background Fluorescence from Space- Relevant Samples	F. Hanke, B. J. A. Mooij, F. Ariese, U. Böttger	J Raman spectrosc. in press	2019	Scientific Journal	http://dx.doi.org/10.1002/jrs.5586
LULI100TW002189	Enhanced laser-driven proton acceleration using ultrasmall nanoparticles	S. Vallières, M. Barberio, M. Scisciò, E. d'Humières, and P. Antici	Phys. Rev. Accel. Beams 22, 091303	2019	Scientific Journal	https://doi.org/10.1103/PhysRevAccelBeams.22.09130
LULI100TW002184	Enhanced relativistic-electron beam collimation using two consecutive laser pulses	S. Malko, X. Vaisseau, F. Pérez, D. Batani, A. Curcio, M. Ehret, J. Honrubia, K. Jakubowska, A. Morace, J.J. Santos and L. Volpe	Scientific Reports 9, 14061	2019	Scientific Journal	https://doi.org/10.1038/s41598-019-50401-y
FELIX002305	Acid solvation versus dissociation at "stardust conditions": Reaction sequence matters	Mani, D., R. Pérez de Tudela, R. Schwan, N. Pal, S. Körning, H. Forbert, B. Redlich, A. F. G. van der Meer, G. Schwaab, D. Marx and M. Havenith	Sci. Adv. 5, eaav8179	2019	Scientific Journal	https://doi.org/10.1126/sciadv.aav8179
FELIX002310	Hydrogen tunneling avoided: enol-formation from a charge- tagged phenyl pyruvic acid derivative evidenced by tandem- MS, IR ion spectroscopy and theory	Mathias, Paul Katrin, Peckelsen Thomas, Thomulka Jörg, Neudörfl Jonathan, Martens Giel, Berden Jos, Oomens Albrecht, Berkessel Anthony, J.H.M., Meijer Mathias, Schäfer	Phys Chem Chem Phys, 21, 16591- 16600	2019	Scientific Journal	https://doi.org/10.1039/c9cp02318j
CNRS-LP3002150	Analysis of Multi-elemental Thin Films via Calibration-Free Laser- Induced Breakdown Spectroscopy	Hermann, J., E. Axente, F. Pelascini, V. Craciun	Anal. Chem. 91, 2544-2550	2019	Scientific Journal	https://doi.org/10.1021/acs.analchem.8b05780
LLAMS002356	Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S- DNA	Backer, A. S., A. S. Biebricher, G. A. King, G. J. L. Wuite, I. Heller, and E. J. G. Peterman	Science Advances 5, eaav1083	2019	Scientific Journal	https://doi.org/10.1126/sciadv.aav1083
SLIC002405	Computed stereo lensless X-ray imaging	Duarte, J., R. Cassin, J. Huijts, B. Iwan, F. Fortuna, L. Delbecq, H. Chapman, M. Fajardo, M. Kovacev, W.	Nature Photonics 13, 449-453	2019	Scientific Journal	https://doi.org/10.1038/s41566-019-0419-1

Fig. 5: Online database for publications resulting from access projects.

4 Task 3 – Testing and Establishing New Communication Channels

In order to improve time- and cost-saving communication between the participants the use of virtual meetings tools such as video conferencing, web meetings and web-based collaboration was expanded. Several board meetings have been held as telephone and web conferences or with partial participation through video conferencing.

Web-based collaboration and shared systems for document management for the coordination of tasks were used by subgroups in different work packages.