
  
 

 

LASERLAB-EUROPE 

The Integrated Initiative of European Laser Research 
Infrastructures III 

 

Grant Agreement number: 284464 
 

 

Work package 32 – Innovative radiation sources at the extremes (INREX) 
 

D32.10 
Report on theoretical study of beam transport and FEL operation in the short pulse 

regime 

 

Lead Beneficiary: 

IST 

Due date: 30 Nov 2015  

Date of delivery: 30 Nov 2015 

 

Project webpage: www.laserlab-europe.eu  

 

Deliverable Nature 
R = Report, P = Prototype, D = Demonstrator, O = Other R 
Dissemination Level 
PU = Public 
PP = Restricted to other programme participants (incl. the Commission Services) 
RE = Restricted to a group specified by the consortium (incl. the Commission  

Services) 
CO = Confidential, only for members of the consortium (incl. the Commission  

Services) 

PU 

 

  

http://www.laserlab-europe.eu/


Deliverable D32.10  LASERLAB-EUROPE (284464) 

 2 

A. Abstract / Executive Summary 
 

Synchrotron sources and free-electron lasers based on laser plasma wakefield 
accelerators: Laser-plasma wakefield accelerators (LFWA) have been developed to the 
point where they can now be considered as a driver of next generation compact radiation 
sources. The most challenging electron beam driven source is the free-electron laser 
because of its unprecedented brightness and coherence.  

The main objective of this deliverable is related to the overaching Task on Synchrotron and 
FEL sources, to pool experimental and theoretical efforts across the various groups to realise 
a LPWFA driven FEL; this deliverable is dedicated to theoretical aspects of this work.  

This deliverable was executed by first, developing the numerical resources capable of 
accurately describing FEL radiation in laser-plasma context (IST).Transport of this beam was 
also tackled (Strath). Thanks to the additional degree of freedom that plasmas offer 
compared to classical undulators for tailored acceleration of particles, new schemes involving 
plasma channels (IST) and new Ion Channel Sources (Strathclyde) were proposed.   

 

B. Deliverable Report 
 

1 Introduction 
The main advances for this deliverable were twofold: the upgrade of the numerical code 
OSIRIS, which is one of the main tools used by Laserlab team-members to guide them in 
experimental interpretation and design in the context of plasma accelerators; and theoretical 
work by Starthclyde, proposing novel geometries. 

All this wok was guided by the advances made by Strathclyde in the experimental and 
theoretical part, as their state-of-the-art facility ran during these past years a program 
dedicated to plasma-based free-electron lasers.  

 

2 Objectives 
The goal of this deliverable is to create and use the numerical and theoretical tools to foster a  
programme  

(1) to optimise the laser-plasma wakefield accelerator and beam transport  

(2) to make it suitable for driving a free-electron laser or compact x-ray synchrotron source. 

(3) theoretical studies of the FEL driven by ultra-short electron bunches and the build up of 
coherence  

(4) including the effects of beam pipe wakefields.  

(5) Investigating the injection of HHG source to control the FEL properties 

 

3 Work performed / results / description  
Beam transport and FEL operation in the short pulse regime has been studied numerically, 
and this development was assisted by experiments carried out by Strathclyde. On the 
accelerator stage, several aspects needed closer inspection: the mechanism for injection (for 
the optimization of the electron bunch in charge and shape), guiding of the beam during the 
acceleration, and the radiation losses as the electron energies increase. 

In both plasma and laser-wakefield accelerators, the full understanding of injection remains 
an open issue. Controlling injection is crucial for the future of plasma-based accelerators 
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since the accelerated beam properties and quality depend on it. Improving properties such 
as emittance, energy spread and angular spread (in which position relative to the axis 
electrons are injected) can be determinant to the injection of the beam into an undulator. 

At IST, we first tackled Objectives 1 and 2, by using OSIRIS to model FEL-type plasma 
undulators.  

IST deploys OSIRIS, a massive particle-in-cell code for laser-plasma interaction, which is 
one of the main simulation toolboxes for the plasma wakefield acceleration community.We 
started by mimicking the FEL micro-bunching and radiation buildup by comparing OSIRIS 
and GENESIS, a well-known code to simulate FEL parameters. Once the relevance for FEL 
studies of our PIC code was established, we moved on to modelling plasma-based solutions.  

The study of the radiation emission in a plasma-wakefield accelerator scenario where a 
magnetic field is applied to assist the injection into the ion cavity was modeled with the 
particle in cell code OSIRIS [1]. Two- and three-dimensional simulations, supported by an 
analytical model, show that external static magnetic fields with suitable spatial profiles and 
amplitudes can relax the self-trapping thresholds in plasma based accelerators [2]. We also 
find that magnetic-field assisted self-injection can lead to the emission of betatron radiation at 
well defined frequencies [3]. This controlled injection technique could be explored using 
state-of-the-art magnetic fields in current/next generation plasma/laser wakefield accelerator 
experiments. 

We also studied the effect of plasma shaping for the transport of the beam (see DL 32.9), 
and driving optical laser shaping, which we found were effective knobs for the control of the 
acceleration mechanism. 

In parallel, at Strathclyde we have carried out both experimental and theoretical 
investigations of injection, characterization of the electron beam, LWFA driven undulator 
radiation emission in the VUV and also betatron radiation emission.  

The injection work has included understanding the evolution of the bubble structure in 
injection. We have now obtained good comparisons with a reduced model showing injection 
and PIC code simulations using OSIRIS and WAKE. Direct measurements of the bunch 
structure by measuring coherent transition radiation, were also carried out, which confirm the 
substructure predicted by the injection model that we have developed. An experimental 
paper has been published on the role of the plume in the LWFA based on a plasma capillary 
[8,9].  A new diagnostic technique for measuring the plasma density in a plasma channel has 
been developed [7]. 
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Figure 1. As the project started, OSIRIS was used to calculate particle trajectories in the case of 
corrugated accelerators, mimicking FEL effects. 

 

Objective 3 was then tackled: the effect of radiation damping on the motion of particles in the 
ultrarelativistic regime was investigated [4]. Up to now such effects were not considered in 
PIC codes, but their impact needed to be taken into account. Several models were compared 
for the calculation of radiation damping force, with the goal of developing an algorithm for 
radiation damping in Osiris. A radiation damping algorithm was then implemented in OSIRIS.  

The radiation package jRad, a post-processor to OSIRIS, is now fully operational, allowing 
for the calculation of radiation from accelerated particles including relativistic corrections due 
to electron recoil in moderate radiation cooling scenarios. The code was upgraded, changing 
the parallelization distribution, from the distribution of particles trajectories by the processes 
to the parallelization in terms of the detection pixels. Such an upgrade presently allows 
to account for coherence effects, which are revealed in the full calculation.  In addition, the 
capability of determining the Stokes parameters and therefore the polarisation properties of 
the radiation emitted by relativistic particles was added. This feature enabled the exploration 
of production of high frequency (VUV to X-ray) polarised radiation sources. 

Alternative sources of X-ray radiation based on plasma wigglers were also investigated. 
Radiation emitted from electrons wiggling in a corrugated plasma channel was investigated. 
The plasma channel corrugation leads to unconventional trajectories and radiation spectra 
distinct from usual setups with LWFA electron bunches in a plasma wiggler. 

For Objective 4, advances made previously were explored to control particle trajectories in 
new plasma geometries. At IST, the upgraded version of OSIRIS was used to determine the 
behaviour of accelerated electrons in these new geometries, as in Figure1. At Strathclyde, 
experiments have been carried out to measure VUV radiation from a LWFA driven undulator. 
This shows that narrow spectral width synchrotron spectra can be produced using a quasi-
monoenergetic LWFA beam. Undulator radiation in the wavelength range 150 – 260 nm has 
been produced by 1.5 fs electron bunches from a 2 mm long laser plasma wakefield 
accelerator. The number of photons measured is up to 9 × 106 per shot for a 100 period 
undulator, giving a peak brilliance of > 3 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. The 
radiation pulse duration is as short as 3 fs for 120 – 130 MeV electron beams. 

Starthclyde investigated in parallel betatron radiation sources. The theoretical investigations 
involve developing a unified theoretical model of betatron radiation. Experiments to 
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characterize the betatron emission in a plasma channel have been carried out and published 
[5,11]. Investigations have been carried out on radiation reaction of particles in high fields 
[6,10]. This work has been published.  

The final objective was to understand the importance of seeding in the design of the plasma-
based FELs. This work was partially accomplished by the new developments in OSIRIS that 
now take into account coherence effects in the radiation, and radiation reaction of 
accelerated particles. However, to further explore the potential of large bandwidth and short 
pulse duration in FEL’s, IST is involved in an international collaboration led by Dr. Giovanni 
de Ninno, at INFN, a Laserlab associated partner, aiming to study the role of seeding with 
high harmonics of a laser in a free electron laser, in a chirped pulse amplification (CPA) 
geometry. CPA permits one to create bunching on a larger number of electrons, and to 
(approximately) linearly increase the output energy of the generated FEL pulse. In ideal 
conditions, the chirp carried by the phase of the seed pulse is transmitted to the output phase 
of the FEL pulse. Chirp compensation after the last undulator allows production of a short 
(ideally Fourier-transformed) pulse and, therefore, a larger peak power with respect to what 
obtained, for the same conditions, in standard (i.e., no-chirp-on-the-seed) operation mode. 
As an additional advantage with respect to standard operation, CPA can significantly shorten 
the final FEL pulse duration with respect to standard operation. An experiment led by Dr. 
Giovanni de Ninno, at INFN was carried out at FERMI-ELETTRA in April 2015, to test this 
concept. 

Finally, the work carried out in Objectives 1 to 5 led to many advances in  FEL and 
synchrotron sources that open new perspectives for plasma-based FELs, not foreseen at the 
beginning of the project. For example, large scale magnetic field generation during the 
acceleration of electron bunches in the laser wakefield accelerator was investigated 
numerically and theoretically in the conditions of recent experiments performed at LOA. This 
worked showed that intense magnetic fields were produced at the boundary between the 
ionised plasma and neutral region resulting from hot electron currents produced during 
plasma wavebreaking. [7]The conditions for a plasma based FEL based on betatron radiation 
have been determined analytically and through particle-in-cell boosted frame OSIRIS 
simulations, which captured coherent radiation emission and amplification. The resulting 
electron beam bunching was also observed. This work also determined key electron beam 
conditions for lasing, in terms of its energy spread and transverse emittance [8]. 

Recently, beams with orbital angular momentum have started being used in laser-plasma 
interaction experiments. It remained to be seen if Laserlab teams could talked them 
theoretically and through simulations. We have investigated a novel positron acceleration 
regime using twisted laser beams with orbital angular momentum. It has been shown that 
intense and exotic lasers can drive doughnut shaped plasma waves suitable for high gradient 
positron acceleration, thereby giving a solution to a key challenge for future high energy 
physics applications [9]. 

 

4 Conclusions 
We successfully delivered the theoretical studies that were proposed, tackling FEL physics 
with simulations and the support of experiments. As could be predicted, once the tools were 
set in place to study the classical geometries, immediately novel solutions that made use of 
the additional degrees of freedom offered by the plasma medium started to be explored. This 
work is very promising and may lead to exciting new discoveries in plasma-based secondary 
sources of ultra-bright radiation.  
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