

российская академия на к. N. Lebedev Physical Institute P.N. Lebedev Physical Institute **Russian Academy of Sciences**

Free-Standing Cryogenic Target Facility created at the Lebedev **Physical Institute**

Elena Koresheva

2nd ETFW, Abingdon, October 27, 2008

Free-standing target (FST) approach to cryogenic target technology and delivery is under development in the Cryotarget Group of Lebedev Physical Institute (LPI) over the last 20 years

□ <u>FST APPROACH</u>

Operation with free-standing targets at each production step: fuel filling \rightarrow fuel layering \rightarrow target injection

□ <u>MOTIVATION</u>

- time and space minimization at each production step \Rightarrow \Rightarrow tritium inventory minimization
- possibility for high rep-rate target fabrication and injection

THE FST-SYSTEM CREATED AT LPI ALLOWS THE REP-RATE FABRICATION OF A FUEL LAYER INSIDE MOVING FREE-STANDING SHELLS

- shell diameter of 0.8÷1.8 mm
- cryogenic layer thickness of 10÷100 μm

• layering time 4÷15 sec

• production rate up to 0.1 Hz (currently)

Computer-aided facility for micro shells permeation filling with gas up to 1000 atm at 300 K

Shell container for transporting a batch of fuel filled shells at 300 K

FST LAYERING MODULE

A 100-projections visual-light tomograph for precise control of the free-standing microshells and cryogenic targets

Rotating & bouncing cell (R&B cell) for new FST experiments

COMPUTER AIDED FILL FACILITY

Fill pressure: 10-to-1000 atm Fill procedure:

- ramp filling (ΔP =const)
- step filling (P =const)
- Work temperature:
- 300 K (CH shells) & 650 K (glass shells) Work gases:
- D2, H2, H2+D2 (different mixtures) & Ar, Ne, Xe, He (as additives)

Permeation fuel filling of a batch of free-standing shells

FILLING CAPABILITY OF THE FACILITY

Experimental facility for research in the area of cryogenic layering inside free-standing targets

The layering module operates according the FST method: rapid fabrication of a fuel layer inside moving free-standing target

The layering channels of different shape for the FST technology optimization

Scanning Parameters

- Full scanning angle: 360 deg.
- Number of projections (max) 1000
- Positioning accuracy: \pm 1.5 min
- \Box Spatial resolution: 1 μ m

Tomograph Shell Tester: image projections data

A 100-projections visual-light micro-tomograph for free-standing microshells and cryogenic targets precise characterization

- Target temperature:
- Probing radiation wavelength: 4
- □ Total scanning angle:
 - Accuracy of positioning:

room & cryo (77-4.2 K)

- 490±7 nm
- 360 degree
- ± (1.5–2.5) min

Current number of projections: 100
Spatial resolution in one projection: ~1 µm
Studied target diameter: ≤ 1.5 mm
Accuracy of reconstruction: ~1 µm

DEVICES FOR FREE-STANDING TARGET POSITIONING: TARGET ROTATING AROUND THE FIXED AXIS

UP-1: Rotating around vertical axis

PERFORMANCE DATA Scanning angle 2.5 deg., full angle 360 deg. Target \emptyset – unlimited Control of projection angle: stepper motor Number of rotation axes – 1 Number of projections – 144 (max)

PERFORMANCE DATA Scanning angle 2.9 deg., full angle 360 deg. Target $\emptyset - \ge 1.2$ mm Control of projection angle: stepper motor Number of rotation axes – 1 Number of projections – 124 (max)

Positioning devices disposal inside the tomographic test chamber of cryostat

PERFORMANCE DATA

- Observation aperture (max): 63⁰
- Outer window diameter: 54 mm
- Target/objective stand-off distance (min): 54 mm
- Work temperatures range: 4.2-20 K, 300 K

ANOTHER APPROACH TO STUDY THE TARGET ALL OVER AROUND: target positioning with random angle of displacement using the R&B cell

Target rotation all over around at 6 K, 1.7 MHz

Target bouncing, T=77 K, 3.7 MHz

Target Studio software for 3D reconstruction of target parameters using a set of its backlit images. Reconstruction algorithm is based on the analysis of bright band position on target backlit images.

3D reconstruction of the parameters of the free-standing CH shell using its 90 backlit projections.

Reconstruction is performed by means of specially developed software Target Studio.

Fourier spectrum of bright band

MICROSHELLS THAT WE USED IN THE CRYOGENIC EXPERIMENTS over the period of 1987-2007

• Products of LPI, Russia (1987-2007)

Method: drop tower

- Glass shells Ø 0.3 ÷ 0.6 mm, $\Delta R = 3-15 \ \mu m$, $\sigma \leq 350 \ kg/mm^2$ (at 300 K)

Methods: drop tower and ballistic furnace

- CH shells \varnothing 0.7 ÷1.5 mm, $\Delta R = 8-20 \ \mu m$

Target heating from 40 K to the moment of CH shell blowing up under the inner pressure action

- **Products of ILE, Japan (2002-2004)** Method: microencapsulating
- CH shells \emptyset 1.4 ÷ 1.8 mm, ΔR = 18-72 μ m, σ < 100 kg/cm² (at 300 K)