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Outline

2D-IR — an introduction
— Method
—  Contributions to spectra
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2D-IR measurements of protein structural dynamics
— Catalase-NO and the role of bound water
— Ferric myoglobin-NO 7
— The effects of mutation on Mb dynamics
— How do structural dynamics relate to function?
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Future perspective
— TRMPS and reaction-following...
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2D-IR Introduction — why 2D?

1D or (FT-IR) is a widely-used technique in chemistry and biology
— Molecular Structure

— Vibrational energy transfer
— Solvent Interactions
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— Ultrafast fluctuations
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2D-IR Introduction — why 2D?

1D or (FT-IR) is a widely-used technique in chemistry and biology
— Molecular Structure
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— Ultrafast fluctuations g
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kR /9 3 But 1D methods do not reveal all of this - we need a
" if P technique to extract this in an efficient manner

Use analogous approach to 2D-NMR and spread our
information over two frequency axes
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Measuring 2D-IR
Correlation of excitation frequency with
detection frequency Array Detector

Train of 100 fs mid-IR pulses

Narrow-bandwidth pump Spectrometer

Broad-bandwidth probe
Scan pump frequency and record

stacked pump-probe spectra Sample
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Narrow-band PUMP
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Double Resonance 2D-IR
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Scanning pump pulse frequency enables
us to build up a stepwise picture of the
2D-IR plot by investigating interactions
and energy transfer pathways one mode
at a time
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Double Resonance 2D-IR

1 v=1-2 diagonal
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Off-diagonal peaks reveal: 3 ---
: g
e Spectral assignments 5
* Vibrational relaxation
* Chemical exchange
* With 100 fs resolution — bridges gap v
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Structural Dynamics t=0

Spectral Diffusion \J

— Inhomogeneous broadening due to A
fluctuations on timescales slower than
experimental time delays give rise to
diagonal elongation and 2D lineshape
evolution

— 2D fitting provides frequency-
frequency correlation function (FFCF)
via ellipticity, CLS or NLS methods

Pump freq (cm™)

Faraday Discussions 145, 429 (2010)
Ishikawa e a/ Proc Nat Acad Sci, 104, 16116-16121 (2007)
Roberts et al | Chem Phys, 125, 084502 (2006)

Probe freq (cm™)

I Ultrafast
Chemical
'Physics

g =

- -;.,-
G55 Strathclyde
aseow



Structural Dynamics t>0

Spectral Diffusion b
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Exponential decays from quantifying lineshape
evolution report solvation or structural

dynamics
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Pump-probe time delay (ps)

Faraday Discussions 145, 429 (2010)
Ishikawa e a/ Proc Nat Acad Sci, 104, 16116-16121 (2007)
Roberts et al | Chem Phys, 125, 084502 (2006)
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Catalase and Haem Proteins

Role of Structural Dynamics in Protein Function
— Do ultrafast fluctuations play a direct role in function?

Catalase and NO
— Haem protein — catalyses 2H,0, -> 2H,0 + O,
— Inhibition by NO — use as probe
— Conserved structure features distal His

Structural dynamics and functionality
— 2D-IR spectroscopy of catalase-NO
— Comparisons with ligand transport proteins (Mb) which also feature distal
His
— Does the local ligand chemical environment differ between Mb and Cat?
— X-ray crystal structure of catalase-NO
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Cata | ase-NO 2D-IR Corynebacterium glutamicum catalase

FTIR
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Organic and Biomolecular
Chemistry 11, 7778 (2013)
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Cata | ase-NO 2D-IR Corynebacterium glutamicum catalase
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Catalase-NO 2D-IR

Absorbance

Organic and Biomolecular
Chemistry 11, 7778 (2013)
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Mb Fe!l-NO 2D-IR Mb mg
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H64Q Mb Fe-NO
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Mutating distal His residue to a GIn leads to markedly

o 1 o different dynamics — effect of interactions between
T, (bs) NO probe and side chains?

PCCP 14, 7411, (2012)
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Catalase X-ray diffraction

Catalase dynamics are similar to wt-Mb and consistent with a
distal His residue but lack of static component is a significant
contrast

Crystal structure shows chain of ‘bound’ water molecules that
are conserved in bacterial and bovine catalases and geometry
indicates shorter distance and preferential interaction angle
between water and NO than His

Similar water does not exist in Mb structure
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Conclusions/Summary

Despite similar structural features near the ligand,
Catalase-NO and Mb-NO show some differences in
spectral diffusion dynamics.

Does the lack of a static component indicate a
substantial change in the protein structural
dynamics related to inhibition? Does the bound
water ‘chain’ contribute to this?

Mutation of Mb suggests a role for the distal
residue side chain in determining short timescale
dynamics. Though water may contribute to these
in Catalase.

Does the water play any role in the ligand binding

or biochemically-observed inhibition of Cat by
NO?
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The future: TRMPS

Pl: Mike Towrie
Pumpm |
Probekl LLLL LIl
> Time
Ultrafast measurement Continuous probing for longer time info
Flash photolysis-like.
e Time-Resolved Multiple Probe
Spectroscopy combines different
repetition rate lasers in a pump — probe
— probe... configuration.
e Currently we measure femtosecond to Py
microscecond dynamics in a single pump o
measurement.
e Covering > 10 orders of timescales .
accesses a wide range of nature’s mICI'OSQCOﬂdS
timescales.
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9.5 BBSRC

L I F Et I m e blosaence for the future

Pl: Mike Towrie

« LIFEtime is a new BBSRC-funded 100 kHz laser and detection system
currently being installed at the Research Complex at Harwell

« Capability to measure molecular changes with higher sensitivity or
TRMPS measurements probing 10x more time points per pump pulse.
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