

2.5D and 3D printing of biomedical implants

Maria Farsari,
IESL-FORTH
mfarsari@iesl.forth.gr

Outlook

- Principles of Direct Laser Writing
- Materials for Direct Laser Writing
- Applications
 - Microfluidic Medical Implants
 - Scaffolds for Cell Growth and Tissue Engineering
 - Scaffold-less Tissue Engineering

Principles of Direct Laser Writing

laser: a tool for 3D photopolymer nanostructuring.

- Photopolymer: a liquid or gel which becomes solid when exposed to appropriate light.
- The use of lasers in 3D structuring is limited by
 - Light absorption at the surface of the material
 - Beer's law: I(x)=I₀e^{-acx}
 - can be overcome by nonlinear multiphoton absorption
 - The diffraction limit
 - $d=a*\lambda/(N.A.)$
 - can be overcome by employing materials with well-defined photopolymerization threshold

Multi-photon polymerization

One-photon polymerization

Picture: C.N. LaFatta et al., Angew. Chem. Int. Ed. 2007, 46, 6238 - 6258.

Multi-photon polymerization

One-photon polymerization

Multi-photon polymerization

Picture: C.N. LaFatta et al., Angew. Chem. Int. Ed. 2007, 46, 6238 - 6258.

3D structuring

"Ballerina" by Mary Manoussidaki, IESL-FORTH, 2011.

Sub-diffraction limit structuring

$$W_{(2)} \sim \sigma_{(2)} I^2$$

 $W_{(2)}$: 2-photon absorption probability

 $\sigma_{(2)}$: 2-photon absorption cross-section

I: Intensity of the Gaussian pulse

High resolution, in-volume structuring

-

Threshold Material

Sub-diffraction limit structuring

Sakellari, I. et al. Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing. ACS Nano 6, 2302-2311, (2012).

Nonlinear lithography

Materials

Hybrid Photosensitive Materials

- Majority of applications involve commercially-available negative photo-resists such as SU8.
- Good structural results but limited flexibility when it comes to bulk or surface functionalization.
- Sol-gel Chemistry: a chemical process for the incorporation of inorganic compounds into organic molecules.
- Photosensitive hybrids undergo through two polymerizations, inorganic and organic.
- Easily functionalized, surface and bulk.

Zirconium, Titanium, Germanium, Ionogel & Graphene, Vanadium Silicates

- Ovsianikov, A., et al. (2008). ACS Nano 2(11): 2257
- Sakellari, I., et al. (2010). <u>Appl.Phys.A 100: 359</u>
- Terzaki, K., et al. (2011). Opt. Mater. Expr. 1(4): 586
- Vasilantonakis, N., et al. (2012). <u>Adv.Mater. 24(8):</u>
 1101
- Sakellari, I., et al. (2012). <u>ACS Nano **6**(3): 2302</u>
- Malinauskas, M., et al. (2012). <u>Opt. Lasers Eng.</u> **50**(12): 1785
- Oubaha, M., et al. (2012). <u>J. Mater. Chem.22(21):</u>
 10552.
- Kabouraki, E., et al. (2013). <u>Nano Letters 13(8): 3831.</u>

FORTH

Toundation for Research & Technology - Hellas

Lasers for life, London, 2014.

Maria Farrari

Highlights

- First Demonstration of Redox Multiphoton Polymerization
- Initiator-free photopolymer
- A third-order material
- Saturation-free structuring

Kabouraki E et al. (2013) Redox Multiphoton Polymerization for 3D Nanofabrication. Nano Letters 13:3831-3835.

Applications

Microfluidic Medical Implants*

* In collaboration with D. Karalekas

Microfluidics: Blood-flow control

- Containing two non-contact parts:
 - main body
 - moving piston-rod
- Both parts fabricated in a single step
- The valve is designed to open under forward fluid flow and close in backward flow

The valve

Microvalve: Open

Microvalve: Closed

Scaffolds for Cell Growth and Tissue Engineering

Tissue Engineering using scalfolds

http://biomed.brown.edu/Courses/BI108/BI108_2007_Groups/group12/Homepage.html

3D Scaffolds

BSA with flavin mononucleotide

Biodegradable PLA with neural cells

Scaffold-free Tissue Engineering

3D bone tissue biofabrication using tissue spheroids

A third strategy ...

"... there is a growing consensus that a third strategy based on the integration of a directed tissue self-assembly approach with a conventional solid scaffold-based approach could be a potential optimal solution ..."

Kachouie NN, Du YA, Bae H, Khabiry M, Ahari AF, Zamanian B, Fukuda J, Khademhosseini A (2010) Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis 6:234-244.

Bone Regeneration: Motivation

- The most common chronic diseases for elderly people are related to failure of bones and joints.
- Future health care will rely on replacement of ill and injured bone tissues.
- Rapidly developing stem cell research, material science and nanotechnology have already generated products used in medicine.

Mineralization of biomimetic 3D scaffolds:

a new route to bone tissue engineering

A combination of "Top-down" and "Bottom-up" technologies

Minicking Nature to Create Hard Tissue

epitaxial growth of aragonite crystals between the organic matrix

- outer layer of calcite crystals
- inner layer (nacre) composed of a 'brick-wall' arrangement of plate-like aragonite crystals
- proteins direct the growth of the inorganic phase
- organic matrix mediates in order to absorb the vibrations

Amyloid-Type Fibrils

Amyloid fibrils are fibrillar aggregates that have specific morphological and structural properties. They are associated with a large group of neurodegenerative diseases.

Self assembled nanostructures:

- controllable sequence
- stable
- excellent thermal and mechanical properties
- form following protein misfolding and miss assembly events
- •Backbone of nacre, oysters, sponges.

Lasers for Life, London, 2014.

Maria Farrari

Directed self assembly of peptide fibrils

Foundation for Research & Technology - Hellas

Lasers for Life, London, 2014.

Maria Farsari

Design of calcium binding peptides for use as scalfolds for bard tissue regeneration

- aspartic acid (D) offers a strong ability for calcium binding
- strong Ca²⁺ binding requires at least 2 ligands carrying negative charges (to have equal but opposite charges)

DDS	D-D-S-G-A-1-7-1-G	HzN-Asp-Asp-Ser-Gly-Ala-Ile-Thr-Ile-Gly-CONHz
AS	A-S-G-A-1-7-1-G	HzN-Ala-Ser-Gly-Ala-lle-Thr-lle-Gly-CONH2

Bi-functional Peptide Fibril

TEM micrograph of peptide fibrils containing acidic amino acids negatively stained

peptide fibrils templated with **gold** nanoparticles.

No negative staining was used

Lasers for life, London, 2014.

Maria Farsari

Mineralization of Peptide Fibrils

'Scalfold-on-Scalfold' Strategy

Calcium Phosphate 3D structures

Foundation for Research & Technology - Hellas

Stoichiometric ratio: Ca/P =1.35

(Ca/P = 1.33 of octacalcium phosphate)

Lasers for Life, London, 2014.

Maria Farrari

Pre-osteoblastic Cell Adhesion onto Mineralized Scaffolds

Biomineralization increase of pre-osteoblasts cultured for 2 weeks on material surfaces

visualization of stained cells with Alizarin Red S prior extraction to quantification

Conclusions

- NonLinear Lithography is a technology which allows the fabrication of fully 3D structures with sub-100 nm resolution
- Materials engineering can be crucial in achieving functional high-resolution devices
- The combination of 3D structuring with self-assembly can open new avenues in tissue regeneration

Contributors

Students

- Elmina Kabouraki
- Aggelos Xomalis
- Argyro Giakoumaki

Former students

- Ioanna Sakellari
- Nikos Vasilantonakis
- Dina Terzaki
- Paulius Danilevicius †

Vladimir Mironov MD, Campinas, Brazil.

FORTH & UoC

- Alexandros Selimis
- Maria Vamvakaki
- David Gray
- Anna Mitraki
- Maria Kafesaki
- Costas Soukoulis
- Maria Chatzinikolaidou
- Costas Fotakis

Funding: ITNs TOPBIO, Thales
 Program 3DSET, EOARD,
 LaserLab Europe.

Further Reading

- I. Sakellari et al. "Diffusion-Assisted High Resolution Direct Femtosecond Laser Writing". ACS Nano. 2012;6:2302-11.
- N. Vasilantonakis, et al. Three-Dimensional Metallic Photonic Crystals with Optical Bandgaps. Advanced Materials. 2012;24:1101-5.
- E. Kabouraki et al., "Redox Multiphoton Polymerization for 3D Nanofabrication" Nano Letters. 2013;13:3831-5.
- K. Terzaki et al., "Mineralized self-assembled peptides on 3D laser-made scaffolds: A new route towards 'scaffold on scaffold' hard tissue engineering". Biofabrication 5
 2013 045002
- M. Malinauskas et al., "Ultrafast laser nano-structuring of photopolymers: a decade of advances". Physics Reports http://dx.doi.org/10.1016/j.physrep.2013.07.005

THANK YOU FOR LISTENING!

