Modelling of ultra-intense laser propagation in plasmas and laser-plasma accelerators: fundamentals

ISCTE UL Instituto Universitário de Lisboa

Laserlab-Europe

Jorge Vieira¹, R. A. Fonseca^{1,2}

¹GoLP/IPFN, Instituto Superior Técnico, Lisboa, Portugal ² DCTI, ISCTE-Instituto Universitário de Lisboa, Portugal

Outline

• Running ZPIC in your computer

- Recall installation notes

• ZPIC toolkit

- Educational notebooks
- Landmark papers

• (Quick) introduction to LWFA

- What a laser wakefield accelerator is
- Why is it interesting?

• Modelling LWFA with PIC Codes

- Choice of normalization units
- Resolution and box size
- Simulation Particles
- Useful diagnostics

Running ZPIC on your computer

Harvard Mark I - 1944 Rear view of Computing Section

Running ZPIC - Option 1 - compile from source

• Build from ZPIC source

- ZPIC itself has no external dependencies, and requires only a
 C99 compliant C compiler
 - gcc, clang and intel tested
- The code is open-source and hosted on GitHub
 - https://github.com/ricardo-fonseca/zpic

• Build Python interface

- The Python interface requires a Python3 installation
- The interface also requires NumPy and Cython packages to be installed
- Just use the Makefile in the python subfolder of the ZPIC distribution
 - This will also compile all of the ZPIC codes

• Using the Jupyter notebooks

- Requires a working Jupyter + Python installation
- Launch Jupyter and open one of the example notebooks
- Use either a browser of Visual Studio Code

python — fish /Users/zamb/Source/zpic/python — -fish [zamb@zamblap-2 ~/S/z/python> make python3 setup.py build_ext -if Compiling em1d.pyx because it changed. Compiling em2d.pyx because it changed. Compiling em1ds.pyx because it changed. Compiling em2ds.pyx because it changed. [1/5] Cythonizing em1d.pyx [2/5] Cythonizing em1ds.pyx [3/5] Cythonizing em2ds.pyx

pes -I/opt/intel/intelpython3/include -I/opt/intel/intelpython3/include -std=c99 -I. -I/opt/intel/intelpy thon3/include/python3.6m -c ../em2ds/zdf.c -o build/temp.macosx-10.6-x86_64-3.6/../em2ds/zdf.o /usr/bin/clang -bundle -undefined dynamic_lookup -L/opt/intel/intelpython3/lib -L/opt/intel/intelpython3/ lib -arch x86_64 build/temp.macosx-10.6-x86_64-3.6/em2ds.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/cha rge.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/current.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/emf .o build/temp.macosx-10.6-x86_64-3.6/../em2ds/fft.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/filter.o b uild/temp.macosx-10.6-x86_64-3.6/../em2ds/grid2d.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/particles.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/random.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/simulatio n.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/timer.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/simulatio n.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/timer.o build/temp.macosx-10.6-x86_64-3.6/../em2ds/zdf.o -L/opt/intel/intelpython3/lib -o /Users/zamb/Source/zpic/python/em2ds.cpython-36m-darwin.so zamb@zamblap-2 ~/S/z/python> []

	🚞 python ·	— jupyter /Use	rs/zamb/Source/z	pic/python — j	upyter-notebo	ook LWFA 2D.ipy	/nb ► python	
nb@zamblap-2	~/S/z/python>	jupyter noteb	ook LWFA 2D.ip	<u>ynb</u>				
17:13:47.845	NotebookApp]	JupyterLab ex	tension loaded 1	<pre>from /opt/int</pre>	el/intelpyth	non3/lib/pytho	n3.6/site-pack	kages/ju
17:13:47.845	NotebookApp]	JupyterLab ap	plication direct	tory is /opt/	intel/intelp	oython3/share/	jupyter/lab	
17:13:47.850	NotebookApp]	Serving noteb	ooks from local	directory: /	Users/zamb/S	Source/zpic/py	thon	
17:13:47.850	NotebookApp]	0 active kern	els					
17:13:47.850	NotebookApp]	The Jupyter N	otebook is runn:	ing at:				
17:13:47.850	NotebookApp]	http://localh	ost:8888/?token=	=676ee830df60	1408ba79a6ec	f0c0db560784f	c654521b963	
17:13:47.850	NotebookApp]	Use Control-C	to stop this se	erver and shu	t down all k	kernels (twice	to skip confi	irmation
17:13:47.854	NotebookApp]							
Copy/paste	this URL into	your browser	when you connect	t for the fir	st time,			
to login wi	th a token:							
http://	localhost:8888	3/?token=676ee	830df601408ba79a	a6ecf0c0db560	784fc654521t	963		
17:13:48.855	NotebookApp]	Accepting one	-time-token-auth	nenticated co	nnection fro	om ::1		
17:13:49.797	NotebookApp]	404 GET /stat	ic/components/mo	oment/locale/	en-gb.js?v=2	20190314171347	(::1) 9.97ms	refere
alhost:8888/n	otebooks/LWFA9	k202D.ipynb						
17:13:50.348	NotebookApp]	Kernel starte	d: 96761370-79ft	o-4e91-bf01-6	c6f0143cea5			
17:13:51.092	NotebookApp]	Adapting to p	rotocol v5.1 fo	r kernel 9676	1370-79fb-4e	e91-bf01-6c6f0	143cea5	

Running ZPIC - Option 2 - use a Docker container

Install Docker desktop on your computer

- Available for free at:
 - <u>https://www.docker.com/products/docker-desktop</u>

• Run the ZPIC image

- The ZPIC container image is hosted on DockerHub
- Open a terminal window and type the following command
 - > docker run -p 8888:8888 -t --rm zamb/zpic
- The first time you do it, it will download the ZPIC container image. This can take a little time.
- Open a web browser on your computer and point it to the appropriate port
 - Type in the following as the address
 - localhost:8888
 - Get the [TOKEN] value from the output of the docker run command
 - The port number must match the docker run command

[zan	ıb@	zam	bla
Exe	ecu	tin	g ti
[I	17	:06	:34
[I	17	:06	:34
[I	17	:06	:34
[]	17	:06	:34
[]	17	:06	:34
[I	17	:06	:34
[I	17	:06	:34
[C	17	:06	:34
	C	opy	/pas
	0.00.000	14	

ramb — docker /Users/zamb — docker run -p 8888:8888 -t --rm zamb/zpic -2 ~> docker run -p 8888:8888 -t -- rm zamb/zpic ne command: jupyter notebook 455 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret 668 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.7/site-packages/jupyterlab 668 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab 670 NotebookApp] Serving notebooks from local directory: /home/jovyan 670 NotebookApp] The Jupyter Notebook is running at: 670 NotebookApp] http://(d02798c226cc or 127.0.0.1):8888/?token=0dd946005de0e6db9083ca039ea66faffd24cd51bdd8d55d 671 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). 671 NotebookApp] ste this URL into your browser when you connect for the first time, to login with a token: http://(d02798c226cc or 127.0.0.1):8888/?token=0dd946005de0e6db9083ca039ea66faffd24cd51bdd8d55d New Tab × + **#** S localhost:8888/?token=6a5923150af1e61987351e53e2dacb8335824aa56349df94 👯 Apps 🚾 FCT : Projectos 🚾 FCT : Curriculum... 🏱 Intel® C++ Compil... 🏱 Intel(R) C++ Com... Contraction Other Bookmarks Search Google or type URL Ļ

Launch a ZPIC notebook

- Option 1 Compile from source
 - i.Compile the code
 - ii.Launch the Jupyter notebook from the source folder:
 - > jupyter notebook LWFA1D.ipynb

Option 2 - Use a Docker Container

- i.Install Docker
- ii.Launch the zpic container
- changes to the existing notebooks or create new ones

> docker run -p 8888:8888 -t -v \$PWD:/home/jovyan/work zamb/zpic

– This mounts the directory \$PWD on the directory work on your container so you can save

Using ZPIC Notebooks

Jupyter notebooks lacksquare

- Similar to Mathematica notebooks but for Python
- Run in a web browser
- Organized in a sequence of cells
- Each cell can contain Python code or annotations

The code is runs inside the notebook \bullet

- Initialize the simulation
- Run to specified time
- Access simulation data directly to visualize output
- Several examples provided

Saving simulation output not necessary \bullet

- Example simulations run in ~ 1 minute
- Visualize results in the notebook
- Interactively modify simulation parameters
- If required (e.g. for longer simulations) the code can save simulation results to disk
 - Files are saved in the ZDF format
 - a Python module is provided to read these files

ZPIC toolkit

2.2

Classroom notebooks

• Since particle and fluid drifts

- ExB
- Diamagnetic
- Magnetic bottle
- ...

• Wave propagation

- Electrostatic and electromagnetic waves
- Magnetized and un-magnetized plasmas
- Faraday rotation

- ...

• Instabilities

- Two-stream
- Weibel

- ...

😑 💿 🧲 Tajima and D (3) - Jupyter	Lab × +								
\rightarrow C O D	127.0.0.1:8889/lab?	☆	⊠ ± 0						
File Edit View Run Kernel Ta	bs Settings Help								
🕂 🖬 🛨 C	Faraday Rotation.ipynb Morse and Nielsen 1971.ipy	Tajima and Dawson 1979.ip							
Filter files by name	🖻 + 🛠 🗇 🗂 🕨 🔳 C 🕨 Markdown 🗸	Ŭ	Python 3 (ipykernel)						
/ papers /									
Name 🔺 Last Modified	Laser Electron Accelerator								
 Morse and a month ago Tajima and a month ago 	T. Tajima and J. M. Dawson								
	Department of Physics, University of California, Los	Angeles, California 90024							
	Physical Review Letters, Volume 43, NUmber 4, July	1979							
	DOI: 10.1103/PhysRevLett.43.267								
	In this notebook we look at the 1D simulations present explore the acceleration of electrons through laser p	nted by Tajima and Dawson in their seminal paper of 1979. In lasma acceleration.	this paper they						
	Original simulations								
	The original paper uses a 1D-3V relativistic electrom is described in more detail in this paper: The Physics	agnetic code based on a spectral solver with gaussian shape of Fluids 17, 1995 (1974) DOI:10.1063/1.1694656.	ed particles which						
	The parameters used below reproduce the ones used periodic boundaries, and as a result some particles a reentering from the front of the simulation box. This larger value (e.g. 150Δ).	d for figure 1 with $c = 10 \omega_p \Delta$. It should be noted that we ar ire pushed backwards by the pump wave and end up recircu effect can be avoided just by setting x0 (the start of the driv	re using simple Ilating and /er pulse) to a						
	We do a small adjustment to the kx parameter settin cutoff at the front of the wave. This lowers the wave	g so that the pump wave has exactly 2 wavelengths, thus ave frequency from $\omega/\omega_p = 4.3$ to 4.12.	oiding a sharp						
	Finally, since ZPIC uses linear interpolation and the c to get less noisy wakefields.	riginal code used gaussian shaped particles, we also use cu	irrent smoothing						
	<pre>[1]: # Add zpic library to path import sys sys.path.append("//lib")</pre>								
	<pre>import em1d as zpic import numpy as np import matplotlib.pyplot as plt</pre>								
	uth = [0.2, 0.2, 0.2] electrons = zpic.Species("electrons", -1.0	, 10, uth = uth)							
	dx = 0.1 Lx = 512 * dx								
	dt = 0.99 * dx								
	nx = Lx/dx								
	<pre>sim = zpic.Simulation(nx, box = Lx, dt = d sim.set_smooth(zpic.Smooth(xtype = "compen")</pre>	t, species = electrons) sated", xlevel = 4))							
	x0 = 50 * dx								

~

0

≣

Landmark papers

• Laser wakefield accelerator

Tajima and Dawson's paper

• Morse and Nielsen

- Weibel instability

\rightarrow C O D 12	27.0.0.1:8889/lab?	☆	♡ ± () =
File Edit View Run Kernel Tab	s Settings Help			
+ 🗈 ± C	🖪 Faraday Rotation.ipynb 🔹 🖪 Morse and Nielsen 1971.ipy 🌒 🔳 Tajima and I	Dawson 1979.ip •		9
Filter files by name Q	🖻 + 🛠 🗊 🖹 🕨 ■ C 🕨 Markdown ∨	14	Python 3 (ipykernel)	0
/ papers /				×
Name A Last Modified	Laser Electron Accelerator			
🖪 Morse and a month ago	T. Tajima and J. M. Dawson			
Tajima and a month ago	Department of Physics, University of California, Los Angeles, Califo	ornia 90024		
	Department of Physics, University of Camornia, Los Angeles, Camor	11118 30024		
	Physical Review Letters, volume 43, Number 4, July 1979			
	DOI: 10.1103/PhysRevLett.43.267			- 11
	In this notebook we look at the 1D simulations presented by Tajima explore the acceleration of electrons through laser plasma accelera	and Dawson in their seminal paper of 1979 ation.	9. In this paper they	
	Original simulations			
	The original paper uses a 1D-3V relativistic electromagnetic code b is described in more detail in this paper: The Physics of Fluids 17, 19	based on a spectral solver with gaussian sl 995 (1974) <mark>DOI:10.1063/1.1694656.</mark>	haped particles which	
	The parameters used below reproduce the ones used for figure 1 windows periodic boundaries, and as a result some particles are pushed back reentering from the front of the simulation box. This effect can be a larger value (e.g. 150Δ).	with $c = 10 \omega_p \Delta$. It should be noted that we skwards by the pump wave and end up recavoided just by setting x0 (the start of the	ve are using simple Firculating and driver pulse) to a	
	We do a small adjustment to the kx parameter setting so that the pu cutoff at the front of the wave. This lowers the wave frequency from	ump wave has exactly 2 wavelengths, thus n $\omega/\omega_p=4.3$ to 4.12 .	s avoiding a sharp	
	Finally, since ZPIC uses linear interpolation and the original code us to get less noisy wakefields.	sed gaussian shaped particles, we also use	e current smoothing	
	<pre>[1]: # Add zpic library to path import sys sys.path.append("//lib")</pre>			
	<pre>import em1d as zpic import numpy as np import matplotlib.pyplot as plt</pre>			
	uth = [0.2, 0.2, 0.2] electrons = zpic.Species("electrons", -1.0, 10, uth = u	uth)		
	dx = 0.1 Lx = 512 * dx			
	dt = 0.99 * dx			
	nx = Lx/dx			
	<pre>sim = zpic.Simulation(nx, box = Lx, dt = dt, species = sim.set_smooth(zpic.Smooth(xtype = "compensated", xleve</pre>	<pre>electrons) el = 4))</pre>		
	x0 = 50 * dx			

Modelling Laser Wakefield Acceleration

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

A quick introduction to laser wakefield acceleration

A quick introduction to laser wakefield acceleration

LWFA first experiments

Courtesy: V. Malka (LOA), K. Krushelnick (IC/RAL), W. Leemans (LBL)

First experimental results

LWFA linear collider

Reference length and time

Choose the normalization

Plasma sets reference

Plasma density is unity

• Normalize lengths to plasma skin depth and frequency to plasma frequency

Example

- Plasma density $n_p = 10^{18} \text{ cm}^{-3}$
- Plasma frequency $\omega_{p} \sim 5.64 \times 10^{13} \, rad \, s^{-1}$
- Laser wavelength $\lambda_0 = 1 \, \mu m$
- Laser frequency $\omega_0 \sim 2.34 \times 10^{15} \, rad \, s^{-1}$
- Normalised laser frequency is $\omega_0/\omega_p \sim 41.5$

Both (and other) normalizations are possible. In this session we will use the plasma as the reference!

Laser sets reference

Reference laser frequency is unity

• Normalize plasma density to critical density; length to inverse laser wavenumber

Example

- Laser wavelength λ_0 =1 μ m
- Laser frequency $\omega_0 \sim 2.34 \times 10^{15} \text{ rad s}^{-1}$
- Critical frequency $n_{crit} \sim 1.72 \times 10^{21} cm^{-3}$
- Plasma density $n_p=10^{18}$ cm⁻³
- Normalized plasma density $n_p/n_{crit} \sim 5.8 \times 10^{-4}$

Choosing the spatial resolution

Spatial resolution

need to resolve the smallest scale length

Laser propagates in an underdense plasma

- $n_p \ll n_{crit} | \lambda_0 \ll \lambda_p | \omega_p \ll \omega_0$

Need to resolve the smallest scale length \bullet

- > 20 - 30 cells per wavelength

Plasma wave

- Skin depth sets the plasma scale length
- $c/\omega_p \sim 5.3 \,\mu m/(n_p [10^{18} \, \text{cm}^{-3}])^{1/2}$

Laser

- laser wavelength sets the laser scale length
- $\lambda_0 \sim 1 \,\mu\text{m} \sim 0.18 \,(n_p [10^{18} \text{cm}^{-3}])^{1/2} \,\text{c}/\omega_p$

Longitudinal spatial Resolution: $\Delta x \sim \lambda_0 / \# \sim 0.18 / \# (n_p [10^{18} cm^{-3}])^{1/2} c / \omega_p$ # > 20-30 (number of cells per laser wavelength)

Simulation box dimensions

Box size

needs to be larger than the largest structure

- Simulations are done in a moving window moving at the speed of light
 - The simulation box does not need to hold the entire propagation length
- Simulation box needs only to model the relevant structures in the accelerator
 - Laser driver and initial trailing buckets of accelerating structure
- Box size determined by largest relevant structures
 - Longitudinally
 - a few plasma wavelengths long
 - $> 4 \lambda p \sim 25 c/\omega p$
 - Transversely (2D)
 - Laser pulse waist / transverse bubble size
 - $> 4 \lambda p \sim 25 c/\omega p$

50

 $x_3 [c / \omega_p]$ 30

20

Setting up the simulation: cells, particles

• Simulation grid

- Box length: L = 4 λ_p
- 20 points per laser wavelength
- $\Delta x \sim \lambda_0 / 20 \sim 0.18 / 20 = 0.009 c / \omega_p$
- Number of cells ~ L / Δ x ~ 2800 cells

• Simulation particles

- Number of particles per cell must resolve local phasespace
- ≫1 in 1D (e.g. 64)
- ~10 in 2D
- Higher numbers improve phasespace resolution (detailed distribution tails)
- Also reduces simulation noise

Particles per cell: \gg 1 in 1D (e.g. 64) and around 10 in 2D

Longitudinal cells: $4 \lambda_p / (0.18/20 \text{ c} / \omega_p) \sim 2800 \text{ cells} (n_p = 10^{18} \text{ cm}^{-3})$

Example box dimensions and resolution (normalized units)

Typical LWFA parameters

Quantity	Normalized laser	Background plasma	Plasma skin depth (c/ ω p)	Laser wavelength	Laser frequency	Laser Pulse	Laser spot-size
Quantity	vector potential (a0)	density (n0) [1/cm^3]	[microns]	(λ L) [nm]	(ooL) [rad/s]	Duration (ot) [fs]	(w0) [microns]
Dimensional	-	1,50E+19	1,68	800	2,35E+15	30	10
Normalized Units	4	1	1	0,476190476	10,75828707	6,55E+00	7,28E+00
Comment	-	-	ωp=4,64x10^4xsqrt(n0)	λL/(c/ωp)	ωL/ωp	st*ωp	w0*ωp/c

PIC simulation box size and resolutions

	Laser		Plasma	Simulation box					
	Spot size [c/wp]	Frequency ($\omega L/\omega p$)	λ ρ [c /ω p]	Lx [c/ωp]	Ly [c/ωp]	Δx [c/ωp]	Δγ [c/ωp]	#cells x	#cellx
Criteria	-	_	-	Larger than plasma wavelength	More than 4x laser spot-size	at least 30 points per laser wavelength	at least 30 points per laser spot-size/plasma wavelength	Lx/∆x	Ly/∆y
Values	4,00	5,00	6,28	25	32	0,04	0,13	600	240

Tajima and Dawson's LWFA paper

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

Simulation initialisation

VOLUME 43, NUMBER 4

PHYSICAL REVIEW LETTERS

23 July 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

• Initializing a ZPIC simulation requires

- Selecting the code version
- Setting up the particle species (sets of particles)
 - The number of species is arbitrary
- Setting up the simulation
 - Grid / Box size
 - Time step
 - Add species

```
# Add zpic library to path
    import sys
    sys.path.append("../../lib")
Code
    import emld as zpic
    import numpy as np
    import matplotlib.pyplot as plt
    uth = [0.2, 0.2, 0.2]
    electrons = zpic.Species( "electrons", -1.0, 10, uth = uth )
species
    dx = 0.1
    Lx = 512 * dx
    dt = 0.99 * dx
and
    nx = Lx/dx
Box
    sim = zpic.Simulation( nx, box = Lx, dt = dt, species = electrons )
    sim.set_smooth( zpic.Smooth(xtype = "compensated", xlevel = 4) )
    x0 = 50 * dx
    width = 10 * np.pi * dx
```


Simulation initialisation - external e.m. fields

• Additional steps

- Adding laser pulse
- External field init.

aser definitions

```
x0 = 50 * dx
     width = 10 * np.pi * dx
     # Original value
     # kx = 2 * np.pi / (15 * dx)
     # Corrected value - 2 cicles
      kx = 4 * np.pi / width
      omega = np.sqrt(1+ kx**2)
      E0 = omega
     def bz0( ix, dx ):
         # Bz is located at the center of the cell
         x = (ix+0.5)*dx
         if (x > x0) and (x < (x0+width)):
             fld = E0*np.sin(kx * (x - x0))
         else:
             fld = 0
External fields
         return [0,0,fld ]
     def ey0( ix, dx ):
         # Ey is located at the corner of the cell
         x = ix * dx
         if (x > x0) and (x < (x0 + width)):
             fld = E0*np.sin(kx * (x - x0))
         else:
             fld = 0
         return [0, fld, 0 ]
     init = zpic.InitialField(B_type = 'custom', B_custom = bz0,
                             E_type = 'custom', E_custom = ey0)
      init = zpic.InitialField(B_type = 'custom', B_custom = bz0,
Run
                               E_type = 'custom', E_custom = ey0)
      sim.emf.init_fld( init )
```


Simulation initialisation - transverse electron momentum

• Additional steps

- Laser injected on top of plasma
- Canonical momentum conservation condition plasma initially at rest
- Set initial particle momentum in polarisation direction

Custom p_v

Run

Plotting data - laser and wakefield

- This data is available as properties of the sim.emf and sim.current objects
 - Electric field
 - -sim.emf.E[x|y|z]
 - Magnetic field
 - -sim.emf.B[x|y|z]
 - Electric current
 - sim.current.J[x|y|z]
- Each of these properties is available as a NumPy array
 - The array dimensions are the same as the simulation grid
- Data can be plotted using any Python tool
 - Matplotlib works fine

```
fig, ax1 = plt.subplots()
     xmin = sim.emf.dx/2
υ
P
     xmax = sim.emf.box - sim.emf.dx/2
     x = np.linspace(xmin, xmax, num = sim.nx)
ake
     color = 'tab:red'
    ax1.set_xlabel('$x_1 [ c / \omega_p ]$')
    ax1.set_ylabel('Pump wave', color=color)
×
ax1.plot(x, sim.emf.Ey, color=color, alpha = 0.5, label = "pump")
    ax1.tick_params(axis='y', labelcolor=color)
     ax1.set_xlim([xmax, xmin])
ax1.set_ylim([-6, 6])
     ax1.grid(True)
P
S
     color = 'tab:blue'
T
     ax2 = ax1.twinx()
     ax2.set_ylabel('Wakefield', color=color)
     ax2.plot(x, sim.emf.Ex, color=color, label = "wakefield")
ax2.tick_params(axis='y', labelcolor=color)
6
     ax2.set_ylim([-0.6, 0.6])
```

```
fig.tight_layout()
plt.title("Electric field\n t = {:g}".format(sim.t))
plt.show()
```


- Particle data is available using the particles property ulletof each species object
 - This will be a NumPy array of structures containing
 - ix the particle cell
 - x the particle position inside the cell
 - ux, uy, uz particle generalized velocities
- These can be easily used to produce a phase space ulletplot for the simulation
 - Note that we have to convert the cell index / position to simulation position

```
import matplotlib.pyplot as plt
pace
   # Simple function to convert particle positions
S
   x = lambda s : (s.particles['ix'] + s.particles['x']) * s.dx
J
S
Π
   plt.plot(x(electrons), electrons.particles['ux'], '.', ms=3)
plt.xlabel("x1")
   plt.ylabel("u1")
   plt.title("u1-x1 phasespace\nt = {:g}".format(sim.t))
   plt.xlim([xmax, xmin])
   plt.grid(True)
    plt.show()
```


LWFA simulation design

Laser Wakefield Acceleration 3D Simulation using the OSIRIS code

Initialise ZPIC simulation of a LWFA (1D)


```
# Add zpic library to path
import sys
sys.path.append("../../lib")
import em1d
import numpy
# Time step
dt = 0.019
# Simulation time
tmax = 22.8
# Number of cells
nx = 1000
# Simulation box size
box = 20.0
## Background plasma
# Particles per cell
ppc = 128
# Use a step density profile
electrons = em1d.Species( "electrons", -1.0, ppc,
                           density = em1d.Density( type = "step", start = 20.0))
# Initialize simulation
sim = em1d.Simulation( nx, box, dt, species = electrons )
```


Initialise ZPIC simulation of a LWFA (1D)

Laser and moving window

Add laser pulse # Set moving window sim.set_moving_window() # Set current smoothing

sim.set_smooth(em1d.Smooth(xtype = "compensated", xlevel = 4))

Run the simulation sim.run(tmax)

physical parameters Laser

 σ_t [fwhm] = $2c/\omega_p$

 $\omega_L = 10\omega_p$

 $a_0 = 1$

sim.add_laser(em1d.Laser(start = 17.0, fwhm = 2.0, a0 = 1.0, omega0 = 10.0, polarization = numpy.pi/2)) Simulations performed in a moving window that travels at c

- More lasers?
 - add several sim.add_laser(...) sections
 - 1D only (so far)

Plasma density

- Charge density of the background plasma
- Wave structure and particle loading

• Longitudinal electric field

- Accelerating / decelerating fields
- Useful engineering formula for denormalization:
 - Eaccel [V/m] = $0.96 \times n_0^{1/2} [cm^{-3}] * E_{sim}$

	<pre>import matplotlib.pyplo</pre>
	fig, ax1 <mark>=</mark> plt.subplots
	<pre># Plot values at the ce xmin = sim.emf.dx/2 xmax = sim.emf.box - si</pre>
and n _e	<pre>ax1.plot(numpy.linspace ax1.set_xlabel("x1") ax1.set_ylabel("E1")</pre>
Plot E _x a	<pre>ax2 = ax1.twinx() ax2.plot(numpy.linspace ax2.set_ylabel(" \$n\$ ") ax2.set_ylim(0,2)</pre>
	plt.title <mark>("Longitudinal</mark> plt.grid (True)
	<pre>fig.legend(loc = (0.75, fig.tight_layout()</pre>
	plt.show()

```
oyplot <mark>as</mark> plt
olots()
ne center of the cells
- sim.emf.dx/2
space(xmin, xmax, num = sim.nx), sim.emf.Ex, label = "$E_1$" )
space(xmin, xmax, num = sim.nx), numpy.abs(electrons.charge()),'r', label = "$|n|$", alpha = 0.8)
```

```
linal Electric Field and Plasma Density\n t = {:g}".format(sim.t))
```

```
.75,0.70))
```


Plasma density and longitudinal electric field

Simulations performed in a moving window that travels at c

Useful diagnostics - Phasespace

Particle phasespace lacksquare

- Show particle momenta as a function of position
- Most common is u_1/x_1
- Wave structure and particle acceleration

Useful de-normalization formula

- (ultra-relativistic) electron energy
 - $E [MeV] = p_1 \times 0.5 \sim gamma \times 0.5$

لە	in	np
pac	#	S
Ses	x	=
pha	p	lt
p1X1	p	lt It
t	p	lt
Δ.	p	lt
	þ	ιι

ort matplotlib.pyplot as plt

```
imple function to convert particle positions
lambda s : (s.particles['ix'] + s.particles['x']) * s.dx
.plot(x(electrons), electrons.particles['ux'], '.', ms = 0.2)
.xlabel("x1")
.ylabel("u1")
.title("u1-x1 phasespace\nt = {:g}".format(sim.t))
.grid(True)
.show()
```


Particle acceleration and deceleration

In plasma based acceleration: Energy $[m_e c^2] = \gamma - 1 \approx \gamma \approx u_1$ [me c]

LWFA simulation in 2D

2D simulation initialisation

```
# Add zpic library to path
import sys
sys.path.append("../../lib")
```

import em2d as zpic
import numpy as np

dt = 0.014 tmax = 22.0

```
#Simulation box
nx = [ 1000, 128 ]
box = [ 20.0, 25.6 ]
```

```
# Particles per cell
ppc = [2,2]
```


LWFA simulation in 2D

```
electrons = zpic.Species( "electrons", -1.0, ppc,
# Initialize simulation
sim = zpic.Simulation( nx, box, dt, species = electrons )
# Add laser pulse
```

Set moving window sim.set_moving_window()

Set current smoothing sim.set_smooth(zpic.Smooth(xtype = "compensated", xlevel = 4))

```
# Run the simulation
sim.run( tmax )
```

density = zpic.Density(type = "step", start = 20.0)) sim.add_laser(zpic.Laser(type = "gaussian", start = 17.0, fwhm = 2.0, a0 = 1.0, omega0 = 10.0, W0 = 4.0, focus = 20.0, axis = 12.8, polarization = np.pi/2))

Useful diagnostics in 2D - Transverse electric fields

• Transverse electric fields

- Laser pulse
- Transverse wave structure

• Also laser pulse

 In this example the laser was polarized out of the plane


```
import matplotlib.pyplot as plt
diagnostics
    range = [[0,sim.box[0]],[0,sim.box[1]]]
    plt.imshow( sim.emf.Ez, interpolation = 'bilinear', origin = 'lower',
              extent = ( range[0][0], range[0][1], range[1][0], range[1][1] ),
              aspect = 'auto', cmap = 'RdBu')
grid
    plt.colorbar().set_label('$E_3$')
    plt.xlabel("$x_1$")
plt.ylabel("$x_2$")
Plot
    plt.title("Laser Field\nt = {:g}".format(sim.t))
    plt.show()
```


Focusing fields: non relativistic particles

E_{\perp} is the focusing force for non-relativistic particles $[(v \times B \ / \ c)_{\perp} \ll E_{\perp}]$

Simulations performed in a moving window that travels at c

Focusing fields: Ultra-relativistic particles

Focusing force for a ultra-relativistic particle:

 $\boldsymbol{E_r + v} \parallel \boldsymbol{\times} \boldsymbol{B_\Theta / c} \simeq \boldsymbol{E_r - B_\Theta}$

• Increase laser a₀

- Observe that the amplitude of the plasma wave grows
- What happens to the plasma density in 2D?
- Presence of wavebreaking and electron injection

• Decrease (normalized) laser frequency

- Equivalent to increase plasma density
- When is the laser reflected by the plasma?

• Dynamics of injected electron beam

- Add external e-/e+ beam (see PWFA notebook)
- Where is the beam simultaneously focused and accelerated?

• Use up-ramps and down-ramps

- Down-ramps can induce electron trapping and acceleration
- Can you observe this mechanism?

Overview

15.

1 11111

IJ

CERN Large Hadron Collider

Accelerator Tunnel

At the end of this session, I should be able to

Understand the importance of laser plasma accelerators

- Compact accelerators
- Applications related to light sources are on the way

Setup laser wakefield acceleration simulation

- Understand how to choose box size and resolutions
- Setup simulations in 1D and 2D
- Plot key diagnostics (fields, plasma, phasespace)

Interpret diagnostics

- Electro dynamics in electric fields
- Use "denormalization" engineering formulas

zpic@edu **Come find us on GitHub** github.com/ricardo-fonseca/zpic

ZPIC website ricardo-fonseca.github.io/zpic

