
R. A. Fonseca1,2, Jorge Vieira1

1 GoLP/IPFN, Instituto Superior Técnico, Lisboa, Portugal
2 DCTI, ISCTE-Instituto Universitário de Lisboa, Portugal

Modelling of ultra-intense laser propagation
in plasmas and laser-plasma accelerators:
fundamentals

Laserlab-Europe

Training event Outline

2

• Session 1 - PIC codes and ZPIC installation
– Basics of PIC simulations

– ZPIC installation and use

• Session 2 - Laser dynamics and plasma accelerators
– Introduction to laser wakefield accelerators

– Numerical modelling of laser-plasma interactions

• Session 3 - Hands on
– Laser propagation in plasmas

– Advanced Visualization and Data analysis

– Challenges for participants

• Session 4 - Participant flash presentations
– Challenges results

– Wrap-up

LETTER
https://doi.org/10.1038/s41586-018-0485-4

Acceleration of electrons in the plasma wakefield of
a proton bunch
E. Adli1, A. Ahuja2, O. Apsimon3,4, R. Apsimon4,5, A.-M. Bachmann2,6,7, D. Barrientos2, F. Batsch2,6,7, J. Bauche2,
V. K. Berglyd Olsen1, M. Bernardini2, T. Bohl2, C. Bracco2, F. Braunmüller6, G. Burt4,5, B. Buttenschön8, A. Caldwell6, M. Cascella9,
J. Chappell9, E. Chevallay2, M. Chung10, D. Cooke9, H. Damerau2, L. Deacon9, L. H. Deubner11, A. Dexter4,5, S. Doebert2,
J. Farmer12, V. N. Fedosseev2, R. Fiorito4,13, R. A. Fonseca14, F. Friebel2, L. Garolfi2, S. Gessner2, I. Gorgisyan2, A. A. Gorn15,16,
E. Granados2, O. Grulke8,17, E. Gschwendtner2, J. Hansen2, A. Helm18, J. R. Henderson4,5, M. Hüther6, M. Ibison4,13, L. Jensen2,
S. Jolly9, F. Keeble9, S.-Y. Kim10, F. Kraus11, Y. Li3,4, S. Liu19, N. Lopes18, K. V. Lotov15,16, L. Maricalva Brun2, M. Martyanov6,
S. Mazzoni2, D. Medina Godoy2, V. A. Minakov15,16, J. Mitchell4,5, J. C. Molendijk2, J. T. Moody6, M. Moreira2,18, P. Muggli2,6,
E. Öz6, C. Pasquino2, A. Pardons2, F. Peña Asmus6,7, K. Pepitone2, A. Perera4,13, A. Petrenko2,15, S. Pitman4,5, A. Pukhov12, S. Rey2,
K. Rieger6, H. Ruhl20, J. S. Schmidt2, I. A. Shalimova16,21, P. Sherwood9, L. O. Silva18, L. Soby2, A. P. Sosedkin15,16, R. Speroni2,
R. I. Spitsyn15,16, P. V. Tuev15,16, M. Turner2, F. Velotti2, L. Verra2,22, V. A. Verzilov19, J. Vieira18, C. P. Welsch4,13, B. Williamson3,4,
M. Wing9*, B. Woolley2 & G. Xia3,4

High-energy particle accelerators have been crucial in providing a
deeper understanding of fundamental particles and the forces that
govern their interactions. To increase the energy of the particles
or to reduce the size of the accelerator, new acceleration schemes
need to be developed. Plasma wakefield acceleration1–5, in which
the electrons in a plasma are excited, leading to strong electric
fields (so called ‘wakefields’), is one such promising acceleration
technique. Experiments have shown that an intense laser pulse6–9
or electron bunch10,11 traversing a plasma can drive electric fields of
tens of gigavolts per metre and above—well beyond those achieved
in conventional radio-frequency accelerators (about 0.1 gigavolt per
metre). However, the low stored energy of laser pulses and electron
bunches means that multiple acceleration stages are needed to
reach very high particle energies5,12. The use of proton bunches
is compelling because they have the potential to drive wakefields
and to accelerate electrons to high energy in a single acceleration
stage13. Long, thin proton bunches can be used because they
undergo a process called self-modulation14–16, a particle–plasma
interaction that splits the bunch longitudinally into a series of
high-density microbunches, which then act resonantly to create
large wakefields. The Advanced Wakefield (AWAKE) experiment
at CERN17–19 uses high-intensity proton bunches—in which each
proton has an energy of 400 gigaelectronvolts, resulting in a total
bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-
long plasma. Electron bunches are then injected into this wakefield.
Here we present measurements of electrons accelerated up to two
gigaelectronvolts at the AWAKE experiment, in a demonstration of
proton-driven plasma wakefield acceleration. Measurements were
conducted under various plasma conditions and the acceleration was
found to be consistent and reliable. The potential for this scheme to
produce very high-energy electron bunches in a single accelerating
stage20 means that our results are an important step towards the
development of future high-energy particle accelerators21,22.

The layout of the AWAKE experiment is shown in Fig. 1. A proton
bunch from CERN’s Super Proton Synchrotron (SPS) accelerator
co-propagates with a laser pulse (green), which creates a plasma
(yellow) in a column of rubidium vapour (pink) and seeds the

modulation of the proton bunch into microbunches (Fig. 1; red, bottom
images). The protons have an energy of 400 GeV and the root-mean-
square (r.m.s.) bunch length is 6–8 cm18. The bunch is focused to a
transverse size of approximately 200 µm (r.m.s.) at the entrance of the
vapour source, with the bunch population varying shot-to-shot in
the range Np ≈ (2.5–3.1) × 1011 protons per bunch. Proton extraction
occurs every 15–30 s. The laser pulse used to singly ionize the rubidium
in the vapour source23,24 is 120 fs long with a central wavelength of
780 nm and a maximum energy of 450 mJ25. The pulse is focused to a
waist of approximately 1 mm (full-width at half-maximum, FWHM)
inside the rubidium vapour source, five times the transverse size of
the proton bunch. The rubidium vapour source (Fig. 1; centre) has a
length of 10 m and diameter of 4 cm, with rubidium flasks at each end.
The rubidium vapour density and hence the plasma density npe can
be varied in the range 1014–1015 cm−3 by heating the rubidium flasks
to temperatures of 160–210 °C. This density range corresponds to a
plasma wavelength of 1.1–3.3 mm, as detailed in Methods. A gradient
in the plasma density can be introduced by heating the rubidium flasks
to different temperatures. Heating the downstream (Fig. 1; right side)
flask to a higher temperature than the upstream (left side) flask creates
a positive density gradient, and vice versa. Gradients in plasma den-
sity have been shown in simulation to produce large increases in the
maximum energy attainable by the injected electrons26. The effect of
density gradients here is different from that for short drivers27. In addi-
tion to keeping the wake travelling at the speed of light at the witness
position, the gradient prevents destruction of the bunches at the final
stage of self-modulation28, thus increasing the wakefield amplitude at
the downstream part of the plasma cell. The rubidium vapour density
is monitored constantly by an interferometer-based diagnostic29.

The self-modulation of the proton bunch into microbunches (Fig. 1;
red, bottom right image) is measured using optical and coherent
transition radiation diagnostics (Fig. 1; purple)30. However, these diag-
nostics have a destructive effect on the accelerated electron bunch and
cannot be used during electron acceleration experiments. The second
beam-imaging station (Fig. 1; orange, right) is used instead, providing
an indirect measurement of the self-modulation by measuring the
transversely defocused protons31. These protons are expelled from the

1University of Oslo, Oslo, Norway. 2CERN, Geneva, Switzerland. 3University of Manchester, Manchester, UK. 4Cockcroft Institute, Daresbury, UK. 5Lancaster University, Lancaster, UK. 6Max Planck
Institute for Physics, Munich, Germany. 7Technical University Munich, Munich, Germany. 8Max Planck Institute for Plasma Physics, Greifswald, Germany. 9UCL, London, UK. 10UNIST, Ulsan,
South Korea. 11Philipps-Universität Marburg, Marburg, Germany. 12Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany. 13University of Liverpool, Liverpool, UK. 14ISCTE—Instituto
Universitéario de Lisboa, Lisbon, Portugal. 15Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia. 16Novosibirsk State University, Novosibirsk, Russia. 17Technical University of Denmark,
Lyngby, Denmark. 18GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. 19TRIUMF, Vancouver, British Columbia, Canada. 20Ludwig-
Maximilians-Universität, Munich, Germany. 21Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia. 22University of Milan, Milan, Italy.
*e-mail: m.wing@ucl.ac.uk

OPEN

2 0 S E P T E M B E R 2 0 1 8 | V O L 5 6 1 | N A T U R E | 3 6 3
© 2018 Springer Nature Limited. All rights reserved.

Session 1 - PIC codes and ZPIC installation

UNIVAC 1 - 1951
Internal view

O i ir ss
4.0

Open-access model

· 40+ research groups worldwide

are using OSIRIS

· 300+ publications in leading

scientific journals

· Large developer and user

community

· Detailed documentation and

sample inputs files available

Using OSIRIS 4.0

· The code can be used freely by

research institutions after

signing an MoU

· Find out more at:

Committed to open science

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

OSIRIS framework

· Massively Parallel, Fully Relativistic

Particle-in-Cell Code

· Parallel scalability to 2 M cores

· Explicit SSE / AVX / QPX / Xeon Phi /

CUDA support

· Extended physics/simulation models

http://epp.tecnico.ulisboa.pt/osiris

mailto:ricardo.fonseca@ist.utl.pt?subject=

Simulation by J. Vieira
• Full-scale modeling: > 1 mm-long target
• Multi-level ionization
• ~ 3×1010 cells
• ~ 6×1010 particles
• ~ 3×104 time-steps
• ~ 0.4 million core h (~ 16 k€)

Full scale 3D LWFA modeling

5

 The ZPIC educational code suite

zpic@edu

• ZPIC code suite
• Open-source PIC code suit for plasma physics education

• Fully relativistic 1D and 2D EM-PIC algorithm

• Eletrostatic 1D/2D PIC algorithm

• Requirements
• No external dependencies, requires only C99 compiler

• Python interface (optional)

• Jupyter Notebooks
• Includes set of Python notebooks with example problems

• Detailed explanations of code use and physics

• Also available through Docker
• If you just want to run the notebooks you can use a

Docker image available on DockerHub: zamb/zpic

Come find us on GitHub
github.com/ricardo-fonseca/zpic

 ZPIC documentation
https://ricardo-fonseca.github.io/zpic

Outline

8

• Review of the Particle-In Cell Algorithm
– Plasma simulation using particles

– The Particle-In-Cell algorithm

– Units and Normaliation

– Time-step considerations

• Installing ZPIC on your Computer
– Compiling from source

– Using a Docker image

• Running ZPIC
– Resolution and box size

– Simulation Particles

– Additional useful diagnostics

• A first laser propagation simulation
– Resolution and box size

The Particle-In-Cell Algorithm

UNIVAC 1 - 1951
Internal view

Kinetic
Description Fluid Description

MHD CodesHybrid CodesParticle
CodesVlasov, Fokker-Planck Codes

Compute the motion of a collection of charged particles,
interacting with each other and with external fields

Overview of Plasma Simulation Algorithms

10

• Plasma Simulations Using Particles
– Pioneered by John Dawson and Oscar Buneman circa 1960

– Use macro particles to simulate large spatial regions

– 1 simulation particle corresponds to many plasma
particles

– Particle-Particle simulations

– Computations go with O(Np2)

– Computationally very demanding

• Particle-In-Cell algorithms
– Interact particles through fields

– Discretize fields on grids

– Interpolate fields at particle positions to calculate forces

– Deposit particle charge/current on a grid

– Particle-Mesh algorithm

– Computations go with O(Np)

– Still computationally heavy but much more tractable

The particle-in-cell (PIC) Algorithm

11

PIC algorithm

Δt

du
dt

=
q
m

E +
1
γ c

u × B
⎛
⎝⎜

⎞
⎠⎟

∂E
∂t

= c
!
∇ × B − 4π j

∂B
∂t

= −c
!
∇ × E

Integration of equations of motion,
moving particles

Weighting

Integration of Field
Equations on the grid

Fi → ui → xi

Jj →(E , B)j

(E , B)j → Fi

Weighting

(x,u)j → Jj

• Fully Relativistic, Electromagnetic Particle-In-Cell algorithm
– Discretize Electric and Magnetic fields on a grid

– Cell size must resolve shortest relevant lengths in the simulation

– Typically the laser wavelength or the plasma skin depth

– Represent plasma particles with simulation macro-particles

– Free to move in entire nD-3V phasespace

– Each macro-particle represents several plasma particles

– Must have enough particles per cell to properly resolve velocity
distributions

• Fields and particles don’t exist in the same simulation topology
– Field quantities are limited to grid points

– Field interpolation connects fields → particles

– Current deposition connects particles → fields

• Four major steps
– Field interpolation

– Particle advance

– Current deposition

– Field advance zpic@edu

Interpolating the fields

12

1

2 3

4

A = ΔxΔy

Δx

Δy

Epart =
A1E1 + A2E2 + A3E3 + A4E4

A

A1

A2 A3

A4

• Particles are free to move to any position
– Field are discretized on a grid

– Field values at particle positions are required to
advance particle momenta

• Interpolate fields at particle positions
– ZPIC uses linear interpolation

– In 2D this can be viewed as area weighting

– The interpolating scheme must be consistent with
charge / current deposition

• Momentum conserving algorithm
– Avoids self-forces

– dp/dt = 0 for single particle

Advance momenta

Pushing the particles

13

• Advance generalized velocity and position of individual
particles

– ZPIC is a fully relativistic code so we work with u = 𝛾 𝛃
instead v.

– We use a leap-frog scheme to integrate particle motion:

– Positions (x) are defined at integral time-steps tn

– Velocities (u) are defined at half time-steps tn+½

– Second-order accuracy in time

• Velocities are integrated using a relativistic Boris pusher
– Separate E and B contributions

i. Accelerate with ½ electric impulse

ii. Full magnetic field rotation

iii. Add remaining ½ electric impulse

– Fully relativistic, second order time accurate

– By construction, no work from B field

• Position advance is straightforward
– ZPIC stores cell index and position inside cell

u− × t

u′ × s

u′

u+

u−

θ

t = −
qBn

γnmc
Δt
2

s =
2t

1 + t2

Advance positions

xn+1 = xn +
un+1/2

γn+1/2
Δt

u− = un−1/2 +
qEn

m
Δt
2

u′ = u− + u− × t

u+ = u− + u− × s

un+1/2 = u+ +
qEn

m
Δt
2

i.

ii.

iii.

iv.

Boris, JP Proc. Fourth Conf. Num. Sim. Plasmas (1970) 3-67

• Connects particle motion to field equations
– Current deposition must satisfy continuity equation:

– The operator ∇’ corresponds to the finite difference
approximation

– Simply depositing 𝜌v does not conserve charge

– Critical to guarantee the solutions to Maxwell’s
equations are self-consistent

• Exact charge conserving current deposition scheme
– Developed by Villaseñor and Buneman for linear

interpolation

– Looks at particle motion, not velocity

– Limited to motion inside single cell

– If particles cross cell boundary, motion is split into
segments that don’t cross boundaries

Depositing the current

14

∂ρ
∂t

= − ∇′ ⋅ j

Villasenor & Buneman Comp. Phys. Comm. 69 (1992) 306-316

Δy
y

x

y+Δy

x+Δx

Δx

Jx (i,j+1)

Jx (i,j)

Jy (i,j)

(i,j)

Jy (i+1,j)

x, y ∈ [-1/2,1/2[

Advancing the EM fields

15

• EM Fields are advanced in time using Maxwell’s equations
using the deposited current as source terms
– Rearrange Ampére’s and Faraday’s laws:

– Discretize temporal and spatial derivatives using finite
differences

• Careful time and spacial centering of quantities leads to 2nd
order accuracy
– ZPIC uses the Finite Difference Time Domain (FDTD)

algorithm

– Fields are staggered in time for 2nd order accuracy

– E is defined at times tn

– B and j are defined at times tn+½

– B is later time centered for use in particle advance

– And also in space:

– Spatial derivatives are also 2nd order accurate

∂B
∂t

= − ∇′ × E

∂E
∂t

= ∇′ × B − j

Δy

Δx

(i,j)

By,Ex,Jx (i,j)Ez,Jz,ρ(i,j)

Bx,Ey,Jy (i,j)

Bz (i,j)

B E J
x
y
z

Choice of time-step

• Choice of time-step is dominated by the FDTD
solver (in sim. units):

• If time step is larger than Courant condition the
field solver becomes unstable

• If time step is much smaller than courant
condition for large k, vph drops as low as 2∕π =
0.637 c

• Relativistic particles may have v > v0
– Numerical Cherenkov

16

Numerical dispersion relation for
1D FDTD Solver

Stable

Unstable

Δt ≤ Δx

Δt ≤ (Δx−2 + Δy−2)− 1
2

1D

2D

�t
�x

= 1

1.2 0.8

0.1

0.5 1.0 1.5 2.0 2.5 3.0
k �x

0.5

1.0

1.5

2.0

2.5

3.0

� �x

Units and Normalization in ZPIC

17
zpic@edu

• Careful choice of units and normalization is critical

– Avoids multiplication by several constants (e.g. me, e and c) improving
performance and numerical accuracy.

– By expressing the simulation quantities in terms of fundamental plasma
quantities the results are general and not bound to some specific units we
may choose

• Units and normalization in ZPIC

– The frequencies are normalized to a normalization frequency, ωn. Time is
normalized to ωn-1.

– Proper velocities are normalized to the speed of light, c. Space is normalized
to c/ωn.

– Charge and mass are normalized to the absolute electron charge, e, and the
electron mass, me. The fields are then normalized appropriately.

– The density is normalized to ωn2 (the normalization frequency squared). So if
the density is 1 at a given location then the normalization frequency is the
plasma frequency at that location.

– If the laser frequency is 1, then the normalization frequency is the laser
frequency and the density is normalized to the critical densify (for that laser
frequency).

zpic units

msp is the mass of the species

B′ = e
c/ωn

mec2
B

E′ = e
c/ωn

mec2
E

x′ =
ωn

c
x

p′ =
p

mspc
=

γv
c

=
u
c

Running ZPIC on your computer

Harvard Mark I - 1944
Rear view of Computing Section

Running ZPIC - Option 1 - compile from source

19

• Build from ZPIC source
– ZPIC itself has no external dependencies, and requires only a

C99 compliant C compiler

– gcc, clang and intel tested

– The code is open-source and hosted on GitHub

– https://github.com/ricardo-fonseca/zpic

• Build Python interface
– The Python interface requires a Python3 installation

– The interface also requires NumPy and Cython packages to be
installed

– Just use the Makefile in the python subfolder of the ZPIC
distribution

– This will also compile all of the ZPIC codes

• Using the Jupyter notebooks
– Requires a working Jupyter + Python installation

– Launch Jupyter and open one of the example notebooks

– Use either a browser of Visual Studio Code

Running ZPIC - Option 2 - use a Docker container

20

• Install Docker desktop on your computer
– Available for free at:

– https://www.docker.com/products/docker-desktop

• Run the ZPIC image
– The ZPIC container image is hosted on DockerHub

– Open a terminal window and type the following
command

– > docker run -p 8888:8888 -t zamb/zpic

– The first time you do it, it will download the ZPIC
container image. This can take a little time.

• Open a web browser on your computer and point it to the
appropriate port

– Type in the following as the address

– localhost:8888/?token=[TOKEN]
– Get the [TOKEN] value from the output of the docker

run command

– The port number must match the docker run command

https://www.docker.com/products/docker-desktop

Launch a ZPIC notebook

21

• Option 1 - Compile from source
i.Compile the code
ii.Launch the Jupyter notebook from the source folder:

 > jupyter notebook LWFA1D.ipynb

• Option 2 - Use a Docker Container
i.Install Docker
ii.Launch the zpic container

 > docker run -p 8888:8888 -t -v $PWD:/home/jovyan/work zamb/zpic

– This mounts the directory $PWD on the directory work on your container so you can save
changes to the existing notebooks or create new ones

Using ZPIC Notebooks

22

• Jupyter notebooks
– Similar to Mathematica notebooks but for Python

– Run in a web browser

– Organized in a sequence of cells

– Each cell can contain Python code or annotations

• The code is runs inside the notebook
– Initialize the simulation

– Run to specified time

– Access simulation data directly to visualize output

– Several examples provided

• Saving simulation output not necessary
– Example simulations run in ~ 1 minute

– Visualize results in the notebook

– Interactively modify simulation parameters

– If required (e.g. for longer simulations) the code can
save simulation results to disk

– Files are saved in the ZDF format

– a Python module is provided to read these files

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

Running ZPIC simulations

ZPIC example: Electrostatic two-stream instability

24

Left electron slab (+v) Right electron slab (-v)

Neutralizing ion background (immobile)

An Initial seed (e.g. from thermal motions) excites
an electrostatic plasma wave

Plasma wave modulates slab electrons

Modulated slab electrons increase amplitude of
plasma wave

Notebook: tutorial/ZPIC

Access the ZPIC example notebook

25

• Open the ZPIC example notebook
– Available at:

– tutorial/ZPIC.ipynb

• Run the simulation
– Each cell in the notebook can be run by

pressing “shift+Enter” or by clicking the “▶”
icon.

– The first cell initializes the simulation

– The second cell runs the simulation

• Visualize the results
– Additional cells in the notebook allow you to

visualize simulation results

– Just execute any of the visualization cells after
running the simulation

Initializing the Simulation

26

• Initializing a ZPIC simulation requires
– Selecting the code version

– Setting up the particle species (sets of particles)

– The number of species is arbitrary

– Setting up the simulation

– Grid / Box size

– Time step

– Add species

• Additional (optional) steps
– Adding laser pulses

– Setting up a moving window simulation

– We’ll look into this later…

Add zpic library to path
import sys
sys.path.append("../../lib")

Selects EM1DS (EM 1D Spectral) code
import em1ds as zpic

m_q = -1.0 # mass over charge ratio, in normalized units
 # (1.0 would be a positron)
ppc = 500 # number of particles per cell
ufl = [0.4, 0.0, 0.0] # fluid momenta
uth = [0.001,0.001,0.001] # thermal momenta

Right going electron species
right = zpic.Species("right", m_q, ppc, ufl = ufl, uth = uth)

Left going electron species
ufl[0] = -ufl[0]
left = zpic.Species("left", m_q, ppc, ufl = ufl, uth = uth)

import numpy as np

nx = 120 # Number of grid cells
box = 4 * np.pi # Simulation box size
dt = 0.1 # Time step

Simulation object
sim = zpic.Simulation(nx, box, dt, species = [right,left])

Co
de

Pa
rt

ic
le

s
Si

m
ul

at
io

n

Running the simulation

27

• We can now run our simulation.

– The simplest way is to use the run() method

– This will advance the simulation up to the specified
time

• This method can be called multiple times
– The simulation will still be active when the command

completes

– We can keep calling the same method to further
advance the simulation time

– This allows us to check the evolution of the various
results at different time steps.

• The simulation results can be accessed directly
– There is no need to store the simulation results to disk

– Although this is possible for very long runs

– All simulation data is exposed as members of the
Simulation object used

Run up to t = 45 (in simulation units)
sim.run(45.0) Ru

n

Accessing EM fields and Current density

28

• This data is available as properties of the sim.emf and
sim.current objects

– Electric field

– sim.emf.E[x|y|z]
– Magnetic field

– sim.emf.B[x|y|z]
– Electric current

– sim.current.J[x|y|z]

• Each of these properties is available as a NumPy array
– The array dimensions are the same as the simulation

grid

• Data can be plotted using any Python tool
– Matplotlib works fine

import matplotlib.pyplot as plt

Plot field values at the center of the cells
xmin = sim.dx/2
xmax = sim.box - sim.dx/2

plt.plot(np.linspace(xmin, xmax, num = sim.nx), sim.emf.Ex)
plt.xlabel("x_1")
plt.ylabel("E_1")
plt.title("Longitudinal Electric Field\n t = {:g}".format(sim.t))
plt.grid(True)

plt.show()

Pl
ot

 E
x fi

el
d

Accessing particle data

29

• Particle data is available using the particles property
of each species object

– This will be a NumPy array of structures containing

– ix - the particle cell

– x - the particle position inside the cell

– ux, uy, uz - particle generalized velocities

• These can be easily used to produce a phase space
plot for the simulation

– Note that we have to convert the cell index /
position to simulation position

import matplotlib.pyplot as plt

Simple function to convert particle positions
x = lambda s : (s.particles['ix'] + s.particles['x']) * s.dx

plt.plot(x(left), left.particles['ux'], '.', ms=1,alpha=0.2, label = "Left")
plt.plot(x(right), right.particles['ux'], '.', ms=1,alpha=0.2, label = "Right")
plt.xlabel("x1")
plt.ylabel("u1")
plt.title("u1-x1 phasespace\nt = {:g}".format(sim.t))
plt.legend()
plt.grid(True)
plt.show()

Pl
ot

 u
x-x

Charge density

30

• Charge density is not used by the algorithm
– But can be easily generated for each particle species

using the charge() method

• Again, it is returned as a NumPy array
– The array dimensions are the same as the simulation

grid

import matplotlib.pyplot as plt

charge = left.charge()

xmin = sim.dx/2
xmax = sim.box - sim.dx/2

plt.plot(np.linspace(xmin, xmax, num = sim.nx), left.charge())
plt.xlabel("x1")
plt.ylabel("rho")
plt.title("Left beam charge density\nt = {:g}".format(sim.t))

plt.grid(True)
plt.show()

Pl
ot

 C
ha

rg
e

De
ns

ity

Phasespace density

31

• ZPIC also includes the possibility of generating 2D
phasespace density grids

– For each particle species we can use the
phasespace() method

• To use this function the user must supply
– The variables to be used for each axis

– The range of values to be used for each axis

– The size of the phase space grid

• The result is returned as a NumPy array
– The array dimensions will be the size of the phase

space grid

import matplotlib.pyplot as plt
import matplotlib.colors as colors

nx = [120,128]
range = [[0,sim.box],[-1.5,1.5]]

pha = np.abs(left.phasespace(["x1", "u1"], nx, range))

plt.imshow(pha, interpolation = 'nearest', origin = 'lower',
 extent = (range[0][0], range[0][1], range[1][0], range[1][1]),
 aspect = 'auto')

plt.colorbar().set_label('density')
plt.xlabel("x1")
plt.ylabel("u1")
plt.title("u1-x1 phasespace density\nt = {:g}".format(sim.t))

plt.show()

Pl
ot

 C
ha

rg
e

De
ns

ity

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

Laser pulse propagation

Laser pulses and moving windows

33

• ZPIC includes the ability to launch laser pulses
– User defined laser parameters

– Laser pulses are created at once: the full laser fields
are super-imposed (added) on the simulation fields

– The temporal envelope of the laser pulses is defined
as a function

– Different rise, fall and flat (constant amplitude) times
may be selected

• Laser pulses should be added after creating simulation
object
– Use the sim.add_laser() method

• 2D Laser pulses have additional options
– Plane wave / Gaussian beams

– Gaussian waist, focal plane propagation axis position

• Check Laser Pulses notebook
– Available at:

– tutorial/Laser Pulses.ipynb

sin2

Initialize simulation
sim = em1d.Simulation(nx, box, dt)

Add laser pulse
sim.add_laser(em1d.Laser(start = 17.0, fwhm = 4.0,
 a0 = 1.0, omega0 = 10.0,
 polarization = np.pi/2))

La
se

r

Moving simulation window at c

34

• Most LWFA simulations are not run in a fixed frame
– There is a large scale disparity: the simulation needs to resolve both the

laser wavelength and the propagation distance

– This leads to (extremely) large simulations

– However, most relevant physics happens close behind the laser driver

• To avoid this issue we can use a moving simulation window
– Model a window that includes only the laser pulse and some distance

behind it

– As the simulation progresses the simulation window moves forward at
the speed of light

– Provided nothing happens ahead of the simulation window, relativity
ensures we are including all relevant physics

– Simulation is still run in the lab frame (no Lorentz boost), we just focus
on a diiferent region of interest

• Using a moving window is straightforward
– Define simulation parameters the usual way

– Do sim.set_moving_window()

Set moving window
sim.set_moving_window()

Run the simulation
sim.run(20.0)

Plot field values at the center of the cells
xmin = (sim.n_move - 0.5) * sim.dx
xmax = sim.box + (sim.n_move - 0.5) * sim.dx

(…)

M
ov

in
g

W
in

do
w

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

Background plasma profile

Plasma density profiles

36

• ZPIC uses a fixed charge per particle inside a species
– The number of particles per cell option corresponds to the reference

density

– As particles move in the simulation domain, local density will vary

• By default ZPIC assumes a uniform density profile
– The number of particles per cell injected in every cell is constant

– Different density profiles can be chosen at initialization using the
species.Density object

• For accelerators the laser is usually initialized in vacuum before entering
some density profile
– The most common profile types used are “step”, “slab” and “custom”

– All work together with moving window

• Check Density notebook
– Available at:

– tutorial/Density.ipynb

density = em1d.Density(type = "step", start = 17.5)

Background plasma
electrons = em1d.Species("electrons", -1.0, 128,
 density = density)

St
ep

Custom density profiles

37

• ZPIC also allows the use of “custom” density profiles
– In this type of profiles the density is defined by a user

supplied function

– This function must take as a single parameter the position
(in simulation units) and return the required density for
that point

• This also works in 2D
– In this case the density must be defined as the product of 2

separable functions

– The user must supply a function for the density as a
function of , and another for the density as a function of x y

Custom density profile
def custom_n0(x):
 return 1.0 + 0.5*np.sin(2*x/np.pi)*np.sin(x/np.pi)

density = em1d.Density(type = "custom", custom = custom_n0)

Background plasma
electrons = em1d.Species("electrons", -1.0, 128, density = density)

Cu
st

om

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

A first 1D LWFA simulation

1D Laser-Wakefield Accelerator

39

• Open the 1D LWFA example notebook
– Available at:

– classroom/LWFA 1D.ipynb

• This notebook presents a simple 1D simulation of a laser wakefield
accelerator
– Grid: 1000 cells

– Box size: 20.0

– : 0.019

– Laser frequency: 10.0

– FWHM: 2.0

– : 1.0

• The simulation also uses smoothing (digital filtering)

– Keeps noise level low even with small number of particles per cell

c/ωp

Δt ω−1
p

ωp

ω−1
p

a0

Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

Background plasma profile

At the end of this session, I should be able to

41

• Understand the fundamentals of PIC simulations
– How does the PIC algorithm model model kinetic plasma scenarios

– What are the fundamental parameters on a PIC simulation

• Get ZPIC up and running on my computer
– Either run a Docker image or install it locally

• Open a ZPIC notebook and run the simulation
– Use either the traditional browser interface or VS Code

• Modify simulation parameters and perform simple data analysis
– Explore different scenarios

– Visualize different quantities

• Next session

– Introduction to laser dynamics and plasma accelerators

ZPIC website
ricardo-fonseca.github.io/zpic

