25 May 2021 - on-line event

Vibrational imaging approaches for cancer diagnosis: status, needs and perspectives

Renzo Vanna, PhD

National Research Council CNR-IFN Department of Physics - Politecnico di Milano

For some diseases we have clear biomarkers

- Genetic diseases (e.g. huntington disease)
- Metabolic diseases (e.g. diabetes)
- Infective diseases (e.g. COVID-19)
- ... **blood**, **nasal swab** or even **saliva** can be enough for diagnosis.

For cancer diagnosis we need to "observe it" (most of the time)

The tissue "as it is" (a 10 µm thick slice)

We need to define a contrast. Today, by chemical staining

POLITECNICO MILANO 1863

The tissue stained by "H&E"

2 mm

- High Subjectivity and Error prone
- Time-consuming (sample preparation and staining)
- Scarce molecular characterization (only morphological)
- Other biomolecular characterization is normally required

- High Subjectivity and Error prone
- Time-consuming (sample preparation and staining)
- Scarce molecular characterization (only morphological)

Bera, Kaustav, et al. Nature reviews Clinical oncology 16.11 (2019): 703-715.

POLITECNICO MILANO 1863

- More objective
- Fast (visualization) same time for staining
- Scarce molecular characterization (only morphological)

Campanella, Gabriele, et al. Nature medicine 25.8 (2019): 1301-1309.

POLITECNICO MILANO 1863

POLITECNICO MILANO 1863

- More objective
- Fast (visualization) same time for staining
- Scarce molecular characterization (only morphological)

Campanella, Gabriele, et al. Nature medicine 25.8 (2019): 1301-1309.

Vibrational imaging for cancer diagnosis

Chemical staining *vs* **Vibrational imaging**

- Highly informative
- Objective
- Label-free
- Compatible with automatic procedures

Vibrational imaging for cancer diagnosis

Vanna, Renzo, et al. La Rivista del Nuovo Cimento (in preparation), (2021)

Renzo Vanna, PhD

NR IFN

Vibrational imaging for cancer diagnosis: how it works

Vibrational imaging for cancer diagnosis: how it works

Renzo Vanna, PhD

Vibrational imaging for cancer diagnosis: how it works

Vanna, Renzo, et al. Cancer research 80.8 (2020): 1762-1772.

Renzo Vanna, PhD

CNR IFN

POLITECNICO MILANO 1863

Vibrational spectroscopies at glance

20 5

1 0.3

(µm)

Typical lateral resolution

RESOLUTION

Vanna, Renzo, et al. La Rivista del Nuovo Cimento (in preparation), (2021)

Vanna, Renzo, et al. La Rivista del Nuovo Cimento (in preparation), (2021)

CANCER RESEARCH | TRANSLATIONAL SCIENCE

Raman Spectroscopy Reveals That Biochemical Composition of Breast Microcalcifications Correlates with Histopathologic Features

Renzo Vanna¹, Carlo Morasso¹, Beatrice Marcinnò², Francesca Piccotti¹, Emanuele Torti², Davide Altamura³, Sara Albasini¹, Manuela Agozzino⁴, Laura Villani⁴, Luca Sorrentino⁵, Oliver Bunk⁶, Francesco Leporati², Cinzia Giannini³, and Fabio Corsi^{5,7}

Check for updates

Vanna, Renzo, et al. Cancer research 80.8 (2020): 1762-1772.

B category	Histological classification	Patients	Total MC	MC found outside the lesion	Representative MC	960
B1 "normal tissue"	NOR	6	65	_	65	107
Total		6	65	-	65	- Martin
B2 "benign" in Total B3 "of uncertain malignancy"	FAD	4	30	_	30	
	FIB	2	8	-	8	
	FNE	1	11	-	11	00 12
	UDH	2	18	-	18	Ca ca
		9	67	-	67	10
	PAP	2	2	-	2	
	FEA (DIN1A)	2	32	-	32	
	ADH (DIN1B)	4	27	-	27	
Total		8	61	-	61	
B5a "carcinoma <i>in situ</i> "	DCIS DIN1C	3	19	11	8	
	DCIS DIN2	8	32	8	24	
	DCIS DIN3	6	46	19	27	00 1
Total B5b "invasive carcinoma"		17	97	38	59	xala
	IDC G2	12	133	92	41	
	IDC G3	1	2	2	0	10
	ILC G2	1	8	8	0	12
	ILC G3	1	33	19	14	
	IMC	1	8	0	8	
Total		16	184	121	63	-
Grand Total		56	474	159	315	

CANCER RESEARCH | TRANSLATIONAL SCIENCE

Raman Spectroscopy Reveals That Biochemical Composition of Breast Microcalcifications Correlates with Histopathologic Features

Renzo Vanna¹, Carlo Morasso¹, Beatrice Marcinnò², Francesca Piccotti¹, Emanuele Torti², Davide Altamura³, Sara Albasini¹, Manuela Agozzino⁴, Laura Villani⁴, Luca Sorrentino⁵, Oliver Bunk⁶, Francesco Leporati², Cinzia Giannini³, and Fabio Corsi^{5,7}

Check for updates

CANCER RESEARCH | TRANSLATIONAL SCIENCE

Raman Spectroscopy Reveals That Biochemical Composition of Breast Microcalcifications Correlates with Histopathologic Features

Renzo Vanna¹, Carlo Morasso¹, Beatrice Marcinnò², Francesca Piccotti¹, Emanuele Torti², Davide Altamura³, Sara Albasini¹, Manuela Agozzino⁴, Laura Villani⁴, Luca Sorrentino⁵, Oliver Bunk⁶, Francesco Leporati², Cinzia Giannini³, and Fabio Corsi^{5,7}

2 mm

500 µm (a few hours)

Check for updates

Vanna, Renzo, et al. Cancer research 80.8 (2020): 1762-1772.

Shipp, Dustin W., et al. Breast Cancer Research 20.1 (2018): 1-14.

Vanna, Renzo, et al. La Rivista del Nuovo Cimento (in preparation), (2021)

NRIFN

FT-IR imaging: example

nature biotechnology

Infrared spectroscopic imaging for histopathologic recognition

Daniel C Fernandez^{1,3,4}, Rohit Bhargava^{1,4}, Stephen M Hewitt² & Ira W Levin¹

- 262 samples from 40 patients
- 3 million spectra
- 6.25 um spatial resolution

.

Fernandez, Daniel C., et al. Nature biotechnology 23.4 (2005): 469-474.

Vanna, Renzo, et al. La Rivista del Nuovo Cimento (in preparation), (2021)

QCL IR-Imaging

QCL source

single-element mercury cadmium telluride (MCT)

5

(µm)

Typical lateral resolution

RESOLUTION

Vibrational spectroscopies at glance

QCL-IR examples

PNAS

Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology

Shachi Mittal^{a,b,1}, Kevin Yeh^{a,b,1}, L. Suzanne Leslie^b, Seth Kenkel^{b,c}, Andre Kajdacsy-Balla^d, and Rohit Bhargava^{a,b,c,e,f,g,h,2}

^aDepartment of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^bBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^bDepartment of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^aDepartment of Pathology, University of Illinois At Urbana–Champaign, Urbana, IL 61801; ^bDepartment of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^bDepartment of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^aDepartment of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^aDepartment of Chemical and Biomolecular Engineering, University of Illinois at Urbana–Champaign, Urbana, Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801

Mittal, Shachi, et al. PNAS 115.25 (2018): E5651-E5660.

QCL-IR examples

PNAS

C

Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology

Shachi Mittal^{a,b,1}, Kevin Yeh^{a,b,1}, L. Suzanne Leslie^b, Seth Kenkel^{b,c}, Andre Kajdacsy-Balla^d, and Rohit Bhargava^{a,b,c,e,f,g,b,2}

^aDepartment of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^bBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; ^dDepartment of Pathology, University of Illinois at Chicago, Chicago, IL 60612; ^eCancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801; ⁹Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and ¹⁰Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801

OPEN Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer **Classification in Tissue Sections** Published online: 16 May 2018

Claus Kuepper¹, Angela Kallenbach-Thieltges¹, Hendrik Juette², Andrea Tannapfel², Frederik Großerueschkamp¹ & Klaus Gerwert¹

Received: 7 December 2017 Accepted: 2 May 2018

(34 min)

(4 days)

Kuepper, Claus, et al. Scientific reports 8.1 (2018): 1-10.

Mittal, Shachi, et al. PNAS 115.25 (2018): E5651-E5660.

Photothermal microscopy

Raman microscopy

SPECTRAL INFORMATION

Photothermal microscopy

SPEED

Coherent Raman Spectroscopies

Raman Scattering (CARS)

RESOLUTION

Pump, ω_p Anti-Stokes -m ω_{aS} -----------w-> Stokes, w Stokes, ws MAA -------m Pump, ω_p -mr -m m Pump, ω_p **Stimulated Raman Coherent Anti-Stokes**

Scattering (SRS)

Raman microscopy

Stimulated Raman Spectroscopy: example

PUBLISHED: 6 FEBRUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 002

nature biomedical engineering

ARTICLES

Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy

Daniel A. Orringer^{1*}, Balaji Pandian¹, Yashar S. Niknafs¹, Todd C. Hollon¹, Julianne Boyle¹, Spencer Lewis¹, Mia Garrard¹, Shawn L. Hervey-Jumper¹, Hugh J. L. Garton¹, Cormac O. Maher¹, Jason A. Heth¹, Oren Sagher¹, D. Andrew Wilkinson¹, Matija Snuderl^{2,3}, Sriram Venneti⁴, Shakti H. Ramkissoon^{5,6}, Kathryn A. McFadden⁴, Amanda Fisher-Hubbard⁴, Andrew P. Lieberman⁴, Timothy D. Johnson⁷, X. Sunney Xie⁸, Jay K. Trautman⁹, Christian W. Freudiger⁹ and Sandra Camelo-Piragua^{4*}

CH₂ (2845 cm⁻¹)

CH_3 (2390 cm⁻¹)

 $CH_3 - CH_2$

Virtual stain (pseudo-H&E)

Stimulated Raman Spectroscopy: example

biomedical engineering

ARTICLES D: 6 FEBRUARY 2017 | VOLUME: 1 | ARTICLE <u>NUMBER: 002</u>

Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy

Daniel A. Orringer¹⁺, Balaji Pandian¹, Yashar S. Niknafs¹, Todd C. Hollon¹, Julianne Boyle¹, Spencer Lewis¹, Mia Garrard¹, Shawn L. Hervey-Jumper¹, Hugh J. L. Garton¹, Cormac O. Maher¹, Jason A. Heth¹, Oren Sagher¹, D. Andrew Wilkinson¹, Matija Snuderl^{2,3}, Sriram Venneti⁴, Shakti H. Ramkissoon^{5,6}, Kathryn A. McFadden⁴, Amanda Fisher-Hubbard⁴, Andrew P. Lieberman⁴, Timothy D. Johnson⁷, X. Sunney Xie⁸, Jay K. Trautman⁹, Christian W. Freudiger⁹ and Sandra Camelo-Piragua⁴⁺

Virtual stain (pseudo-H&E)

Virtual stain (pseudo-H&E)

1 mm

Orringer, Daniel A., et al. Nature biomedical engineering 1.2 (2017): 1-13.

(120 sec)

Stimulated Raman Spectroscopy

Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks

Todd C. Hollon[®]¹, Balaji Pandian², Arjun R. Adapa², Esteban Urias², Akshay V. Save³, Siri Sahib S. Khalsa[®]¹, Daniel G. Eichberg⁴, Randy S. D'Amico⁵, Zia U. Farooq⁶, Spencer Lewis², Petros D. Petridis[®]³, Tamara Marie⁷, Ashish H. Shah⁴, Hugh J. L. Garton¹, Cormac O. Maher¹, Jason A. Heth¹, Erin L. McKean^{1,8}, Stephen E. Sullivan¹, Shawn L. Hervey-Jumper^{1,15}, Parag G. Patil[®]¹, B. Gregory Thompson¹, Oren Sagher¹, Guy M. McKhann II⁵, Ricardo J. Komotar⁴, Michael E. Ivan[®]⁴, Matija Snuderl⁹, Marc L. Otten⁵, Timothy D. Johnson¹⁰, Michael B. Sisti⁵, Jeffrey N. Bruce⁵, Karin M. Muraszko¹, Jay Trautman⁶, Christian W. Freudiger⁶, Peter Canoll¹¹, Honglak Lee¹², Sandra Camelo-Piragua¹³ and Daniel A. Orringer[®]^{1,14*}

- 2.5 min (vs 30 min H&E) [smaller tissue regions]
- 278 patients
- 4 systems in 4 hospitals
- > 2.5 million images
- 94.6% accuracy (vs 93.9% H&E)

Hollon, Todd C., et al. Nature medicine 26.1 (2020): 52-58.

POLITECNICO MILANO 1863

Broadband SRS example

INFORMATION

Raman microscopy

De la Cadena, Alejandro et al. (2021) in preparation Polli, Dario, et al. Laser & Photonics Reviews 12.9 (2018): 1800020..

SPEED

What's next?

Powerful technologies Promising data

Space for improvements ..to move technologies to clinical use

Next steps: How to meet clinical needs ?

0) Technology improvement (...)

Next steps: How to meet clinical needs ?

0) Technology improvement

1) Validation, networking, validation

Guo, Shuxia, et al. *Analytical Chemistry* 92.24 (2020): 15745-15756. Fornasaro, Stefano, et al. *Analytical chemistry* 92.5 (2020): 4053-4064.

Next steps

- **0)** (not only) **Technology improvement**
- 1) Validation, networking, validation
- 2) Early definition of clinical and final user need
 - Strong interdisciplinarity
 - Deep involvement of clinicians

Next steps

- **0)** (not only) **Technology improvement**
- 1) Validation, networking, validation
- 2) Early definition of clinical and fina
 - Strong interdisciplinarity
 - Deep involvement of clinicians

LETTERS nature medicine nature biomedical engineering ARTICLES PUBLISHED: 6 FEBRUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0027

Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy

Daniel A. Orringer^{1*}, Balaji Pandian¹, Yashar S. Niknafs¹, Todd C. Hollon¹, Julianne Boyle¹, Spencer Lewis¹, Mia Garrard¹, Shawn L. Hervey-Jumper¹, Hugh J. L. Garton¹, Cormac O. Maher¹, Jason A. Heth¹, Oren Sagher¹, D. Andrew Wilkinson¹, Matija Snuderl^{2,3}, Sriram Venneti⁴, Shakti H. Ramkissoon^{5,6}, Kathryn A. McFadden⁴, Amanda Fisher-Hubbard⁴, Andrew P. Lieberman⁴, Timothy D. Johnson⁷, X. Sunney Xie⁸, Jay K. Trautman⁹, Christian W. Freudiger⁹ and Sandra Camelo-Piragua^{4*}

Orringer, Daniel A., et al. *Nature biomedical engineering* 1.2 (2017): 1-13. Hollon, Todd C., et al. *Nature medicine* 26.1 (2020): 52-58.

Acknowledgments

Team at IFN-CNR – Politecnico di Milano

Dario Polli Giulio Cerullo Marco Marangoni Cristian Manzoni

Carlo Morasso (ICS Maugeri Hospital) Nick Stone (Exeter University) Cinzia Giannini (IC-CNR)

Michael Schmitt (IPHT), Tomas Mayer (IPHT), Hervé Rigneault (Fresnel), Orlando Guntinas (UniMed Jena), Cambridge Raman Imaging (CRI srl), Italia Bongarzone (INT), Cristina Sobacchi (Humanitas)

Fundings

H2020 No 101016923 (CRIMSON) Regione Lombardia POR FESR 2014-2020 (NEWMED)

NewMed

Thank you!

Team at IFN-CNR – Politecnico di Milano

Dario Polli Giulio Cerullo Marco Marangoni Cristian Manzoni

Carlo Morasso (ICS Maugeri Hospital) Cees Otto (Twente University) Nick Stone (Exeter University) Cinzia Giannini (IC-CNR)

Michael Schmitt (IPHT), Tomas Mayer (IPHT), Hervé Rigneault (Fresnel), Orlando Guntinas (UniMed Jena), Cambridge Raman Imaging (CRI srl), Italia Bongarzone (INT), Cristina Sobacchi (Humanitas)

Fundings

H2020 No 101016923 (CRIMSON) Regione Lombardia POR FESR 2014-2020 (NEWMED)

Renzo Vanna, PhD

