

# Laserlab V JRA2

Advanced Laser-based Techniques for Imaging and Spectroscopy in material science and biomedicine (ALTIS)

### Mike Towrie



Science and Technology Facilities Council



## **ALTIS**

### Advanced Laser-based Techniques for Imaging and Spectroscopy

- Addressing the needs of new and innovative workstations, methodologies
- Platforms for advanced imaging and spectroscopy.
- Applications in (for example) biomedicine, bio- and nanomaterials and environmental science.
- 20 partners in 4 interconnected objectives in 9 focused tasks.











## **ALTIS - OBJECTIVES**

1

Advanced Nano, Microscopic Imaging and Spectroscopy Advanced Meso- and Macroscopic Imaging and Spectroscopy

2

### Ultrafast Spectroscopy from THz to XUV

3

### Advanced spectroscopic methods for atmospheric pollutants and microplastics

4

- detection, characterization and imaging of biological samples
- single molecule (nanometers) to single cells or small cell populations (microns)
- label free to minimise perturbation to function

- analysis of large biological samples, from tissues to whole organs and animals
- improving spatial and temporal resolution in techniques such as lightsheet microscopy & optical tomography
- address the challenge to translate laser-based techniques to the clinics

- ultrafast, pump-probe instrumentation and techniques
- broad range of frequencies
   attoseconds to
   femtoseconds
- electronic and vibrational coherent multidimensional spectroscopy
- as/fs XUV spectroscopy XUV materials and gases

- addressing air and water pollution
- accurate scientific methods to evaluate the impact of polluting gases, metals and microplastics
- different, complementary, laser spectroscopic techniques

### **THE PARTNERS**

1

Advanced Nano, Microscopic Imaging and Spectroscopy

**Task 1.1** STFC-CLF\*, CNRS -ISMO Increase single molecule imaging in terms of multiplexing or 3D localization

**Task 1.2** LENS\*, LLAMS, CNRS – ISMO, ILC, INFLPR, VULRC Platforms for imaging, detection and manipulation of biological samples at the molecular and cellular scale

**Task 1.3** LENS\*, LLAMS, CNRS – ISMO, ILC, INFLPR, VULRC Label-free spectroscopy and imaging

### Advanced Meso- and Macroscopic Imaging and Spectroscopy

2

**Task 2.1** CUSBO\*, ULF-FORTH, ICFO, LENS, VULRC, CNRS-ISMO, CLL, MUT-IOE High-resolution imaging of intact biological samples

**Task 2.2** LLAMS\*, LLC, CLL, ICFO, CUSBO, ULLC, USZ Translational research: from biophotonics to clinical use Ultrafast Spectroscopy from THz to XUV

3

*Task 3.1* CUSBO\*, LLC, LLAMS, LACUS, LENS, CALT, CNRS-ISMO Coherent multidimensional spectroscopic tools and methods

**Task 3.2** LIDYL\*, ULF-FORTH, CNRS-ISMO, MPQ-MPG Workstations for spatially/angularly resolved attosecond spectroscopy

*Task 3.3* STFC-CLF\*, MPQ, CUSBO, CALT, FELIX Optical setups for condensed matter spectroscopy in the XUV Advanced spectroscopic methods for atmospheric pollutants and microplastics

4

**Task 4.1** LLAMS\*, LLC, CALT, FELIX, ILC, ULLC Advanced spectroscopic methods for atmospheric pollutants and microplastics **Task 1.1** Increase single molecule imaging in terms of multiplexing or 3D localization STFC-CLF\*, CNRS -ISMO

### Merging fast 3D adaptive optics (AO) control with DAISY

Dual-view Astigmatic Imaging with Supercritical Angle Fluorescence Yield imaging

- 3D localisation ~1 micron above coverslip
- down to 15 nm axial resolution (minimal resolution loss in X and Y)
- new optical strategies and fluorescent reporter control
- Fast response (10 ms) transmissive addressable AO device for fast 3D imaging



# <u>SME Collaborations</u> Adaptica (www.adaptica.com) deformable mirror technology. Abbelight (www.abbelight.com) that has a license on the patent for DAISY imaging, and is supportive in terms of software developments.

**Task 1.2** *Platforms for imaging, detection and manipulation of biological samples at the molecular and cellular scale* LENS\*, LLAMS, CNRS –ISMO, ILC, INFLPR, VULRC + Nanoscience Centre (NSC Finland) subcontractor

## Innovate platforms to manipulate and image single cells.

- Pushing the limits in mechanobiology, electrophysiology and sub-cell organisations
- Tweezers and acoustic force to manipulate polymers
- Complementary and combinatory approaches to sub diffraction 3D microscopy - SIM, STORM/PALM, AFM spatial organisation, mechanical, topical and electric properties
- Potential changes and Ca<sup>2+</sup> fluxes monitored and controlled by FRET force sensors and photo-cages



# SME Collaborations Abbelight (www.abbelight.com) Femtika (www.femtika.lt ) sample registration between the super-resolved image and the AFM image LUMICKS (www.lumicks.com) acoustic force and optical tweezers in combination with fluorescence instrumentation

**Task 1.3** Label-free spectroscopy and imaging ILC\*, ULF-FORTH, LENS, CALT, CLL, ULLC + IPHT Jena (Germany)



### **Creating optical fingerprint database for label free spectroscopy and imaging**

- Spectroscopic features (auto-fluorescence, Raman, SRS, CARS, SHG etc) of molecular, cellular and tissue samples
- Made available on open-source engines with associated analytical packages
- Collecting and finding correlations between signals and molecular and physiological changes
- Exchange of reference samples between partners

SME collaborations:

LaserLeap SA non-invasive skin diagnostics to facilitate translation of the developed knowledge base to clinical settings.
 Becker&Hickl (www.becker-hickl.com), leader in TCSPC instrumentation design and applications, to increase potential of world-wide impact of the developed database.
 Light4Tech (www.l4t.it) helping with integration and prototyping of new devices.

**Task 2.1** High-resolution imaging of intact biological samples CUSBO\*, ULF-FORTH, ICFO, LENS, VULRC, CNRS-ISMO, CLL, MUT-IOE

### Broadening the applicability of instruments in the bioand medical fields

- Improving capabilities, adopting novel photonic technologies and sample preparation.
- Technology exchange eg photo-generated micromechanical components
- Knowledge exchange eg Light Sheet Microscopy better views, faster and denser
- Correlative imaging and integrated approaches LSFM, Single molecule, Coherence Tomography Soft X-Ray Contact
- Wave shaping and spectral tuning to probe large opaque material, for fast flow imaging



#### SME collaboration:

Femtika (www.femtika.lt) for the production of custom made micro-optical components and micromechanical sample holders.

**Task 2.2**Translational research: from biophotonics to clinical useLLAMS\*, LLC, CLL, ICFO, CUSBO, ULLC, USZ



# Translational research transforms scientific findings to clinical applications

- cooperate in development of time-domain (time-of flight) and CW Diffuse Correlation Spectroscopy.
- techniques clinically tested on human skin
- early detection of biomarkers for cancer and neuronal injuries in stroke victims
- develop portable multifunctional imaging platforms combining Optical Coherence Tomography with targeted fluorescence imaging
- teacher and student 'exchange' and possible joint clinical studies

SME Collaborations HemoPhotonics (www.hemophotonics.com) and MPD (www.micro-photon-devices.com) - advisors and providers/developers of components. **Task 3.1** Coherent multidimensional spectroscopic tools and methods CUSBO\*, LLC, LLAMS, LACUS, LENS, CALT, CNRS-ISMO + Subcontractor Laserlab-DK (Denmark)

### **Bringing 2D spectroscopy to LASERLAB-EUROPE**

- increase the availability and extending applications of 2D spectroscopy THz to Deep UV
- developing suite of techniques with associated data visualisation and analysis tools
- ultra-broadband ultrashort pulses THz to IR visible UV to Deep UV generated in OPAs, gases and fibres
- enhanced time resolution, frequency resolution performance, phase frequency control
- simulation packages for the TA and 2D data based on global analysis



**SME collaboration: NIREOS** (www.nireos.com), a spin-off company supports activities and commercial exploitation **Task 3.2** Workstations for spatially/angularly resolved attosecond spectroscopy LIDYL\*, ULF-FORTH, CNRS-ISMO, MPQ-MPG

### Attosecond dynamics - a concerted approach

- Ultrafast molecular dynamics probed by attosecond XUV CEP stable IR to UV sources
- Long term timing and phase stability crucial different/complementary schemes will be studied and compared
- Methods to characterise attosecond pulses even down to a single shot
- Combining photo-electron with photo-ion detection in correlative measurements



**Task 3.3** Optical setups for condensed matter spectroscopy in the XUV STFC-CLF\*, MPQ, CUSBO, CALT, FELIX



### Time Resolved X-Ray – better quality, better tunability

- develop new user-friendly tools for time-resolved measurements on solid targets.
- improved capability in terms of both data quality and of pump and probe tunability
- towards attosecond transient reflection and absorption spectroscopy flexible incident angles and rotations
- evaluating and developing new attosecond 100 kHz sources

**Task 4.1** Advanced spectroscopic methods for atmospheric pollutants and microplastics LLAMS\*, LLC, CALT, FELIX, ILC, ULLC

### Addressing the need for new laser spectroscopic workstations and methods



GASES:- Targeting greenhouse and ozone depleting gases from hydrocarbon release, biomass burning,.....

- Complementary non-linear optical techniques for combustion diagnostics and environmental analysis
- Species sensitive rotational and vibrational spectroscopies
- Remote and miniature sensing.
- Cross-calibration pollutant exchange for intercomparison and validation for future access projects

### PLASTICS:- Identifying plastics in the environment, foods dust.....

- Type specific identification of microplastics using non-linear Raman spectroscopies
- Type specific identification of microplastics using IR photonics and analysing structures by IR/Mass-Spec
- Natural auto-fluorescence as a measure of the response of algae to pollution
- Cross-calibration microplastic exchange for intercomparison and validation for future access projects





#### SME collaboration:

Optics11 (www.optics11.com) photoacoustic spectroscopy work (in-kind) with expertise and free equipment loan.



THE PARTNERS



| LLC       | Lund Laser Centre                                      | Sweden      |
|-----------|--------------------------------------------------------|-------------|
| LIDYL     | Laboratoire Interactions, Dynamiques et Lasers         | France      |
| CNRS-ISMO | Institut des Sciences Moléculaires d'Orsay             | France      |
| LACUS     | Lausanne Centre for Ultrafast Science                  | Switzerland |
| ULF-FORTH | Foundation for Research and Technology-Hellas          | Greece      |
| ICFO      | The Institute of Photonic Sciences                     | Spain       |
| CALT      | Centre for Advanced Laser Techniques                   | Croatia     |
| ILC       | International Laser Centre                             | Slovakia    |
| INFLPR    | National Inst. for Laser, Plasma and Radiation Physics | Romania     |
| LENS      | European Laboratory for Non-Linear Spectroscopy        | Italy       |
| MPQ       | Max Planck Institute of Quantum Optics                 | Germany     |
| MUT-IOE   | Military University of Tech, Inst. of Optoelectronics  | Poland      |
| CUSBO     | Centre for Ultrafast Science and Biomedical Optics     | Italy       |
| FELIX     |                                                        | Netherlands |
| CLL       | Coimbra Laser Lab                                      | Portugal    |
| STFC-CLF  | Central Laser Facility                                 | UK          |
| ULLC      | Laser Centre of the University of Latvia               | Latvia      |
| USZ       | Dept. Physics, University of Szeged                    | Hungary     |
| LLAMS     | LaserLab Amsterdam                                     | Netherlands |
| VULRC     | Laser Research Centre                                  | Lithuania   |