JRA Highlights Joint JRA Meeting, Florence 9-10 Oct. 2019

- 1. Meso-Scale (Multi-Scale) Laser 3D Printing of Biomaterials
- 2. Multimodal spectroscopy for tissue diagnostics
- 3. Stimulated Raman scattering (SRS) microscopy
- 4. Time-Domain Diffuse Correlation Spectroscopy
- 5. Development of sources and instrumentation for X-ray spectroscopy & imaging
- 6. Two-dimensional Electronic Spectroscopy
- 7. Coherent Beam Combination update and Fast Pointing Beam Stabilisation
- 8. Thin-disc and volume laser based mid-IR sources
- 9. High-rep. rate, single-shot, measurement of the carrier-to-envelope offset phase
- 10. Advanced Attosecond Working Stations for Material Science Studies
- 11. Preparing laser accelerated proton beams for dose controlled irradiation studies
- 12. Targetry

Vilnius University

1A - Meso-Scale (Multi-Scale) Laser 3D Printing of Biomaterials

A problem associated with direct laser writing 3D lithography (two-photon polymerization) is the <u>limited throughput</u>, an <u>inevitable stitching/overall object size</u> and a <u>choice of materials</u>.

1B - Meso-Scale Laser 3D Printing of Bio-Materials

from natural biodegradable/biocompatible to synthetic tunable properties composites towards pure inorganics

Proteins – Biopolymers – Hydrogels – Acrylates – Epoxies-Organic-Inorganic Hybrids

Scientific papers proposing the solution and acknowledging LL JRABIOAPP:

- L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, M. Malinauskas, Mesoscale Laser 3D Printing, Opt. Express 27(11), 15205-15221 (2019); https://doi.org/10.1364/OE.27.015205, OSA [IF-3.356].
- A. Butkutė, L. Čekanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, M. Malinauskas, Optical Damage Thresholds of Microstructures Made by Laser 3D Nanolithography, in PrePrints / under review (2019).

2A - Multimodal spectroscopy for tissue diagnostics

TURBT (Trans-urethral resection of bladder tumour)

- To endoscopically diagnose bladder tumour as well as to perfrom tumour grading and staging
- Biopsy (small) + sectioning + staining
- Difficulties for the pathologists in:
 - Orienting the samples
 - Identify slicing direction
 - <u>Difficult diagnosis</u>

Experimental setup (multimodal fiber-probe spectroscopy system)

- Laser diodes @378 nm & @445 nm
- Halogen Lamp
- Laser diode @785 nm
- Quadrifuracted probe (EMVision LLC)
- Spectrograph (grating 600 lines/mm)
- Cooled CCD camera (Horiba Syncerity)

2B - Bladder tumor staging

Normal vs Tumour

normal vs tumour

T₁ vs T₂

T1 vs Ta

T₂ vs T_a

. ,g9°			
	Specificity (%)	Sensitivity (%)	AUC (%)
	90	74	91
	80	85	85
	73	71	75
	80	80	86

3A - Stimulated Raman scattering (SRS) microscopy

Conventional Raman scattering

Complete vibrational spectra, but slow!

Stimulated Raman scattering

Requires two pulsed lasers; much faster for mapping

3B - Recent SRS developments

Long-wavelength SRS (using the OPO idler output in combination with 1064 nm pump beam) enables deeper imaging

3D distribution of 15-μm polyethylene microspheres embedded in a silicone rubber matrix, down to 250 μm

Environmental microplastics

Hyperspectral SRS at 6 wavenumbers was developed to detect and identify microplastic particles (down to 10 μ m) in harbour sediment We found a total of 12 000 particles/kg sediment

$$\begin{array}{c}
CH_{3} \\
CH_{3} - Si \\
CH_{3} \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
O - Si \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
O - Si - CH_{3} \\
CH_{3}
\end{array}$$

Polydimethylsiloxane (PDMS)

Leaking silicone gel from breast implants is a major problem, but it is invisible to the pathologist

Silicone can be detected by SRS microscopy at 2905 cm⁻¹ (C-H stretch vibration) and then overlaid (in green) on a standard H&E image.

4A - JOINT POLIMI - ICFO LABORATORY ON Time-Domain Diffuse Correlation Spectroscopy (DCS)

Joint POLIMI+ICFO distributed laboratory
Long-Term perspective: Foundation of TD-DCS towards clinical translations

Action 1 – new workstation @POLIMI

M.Pagliazzi et al., Biomed. Opt. Express 8 (2017)

Action 3 – first time-gated in vivo data

Action 2 – design of reference tissue phantoms

Lipofundin (scattering) + Ink (absorption)
+ Glycerol (viscosity)

L.Cortese et al., Biomed. Opt. Expr. (2018)

Action 4 – in vivo measurements >1000 mm

- ullet Higher amplitude (eta) and slower decay of g_2
- SNR shifted to higher $\tau \rightarrow$ chance of parallel detection

L.Colombo et al., in preparation (2019)

5A - Development of sources and instrumentation for X-ray spectroscopy & imaging

Laser-produced plasma X-ray sources (LPP)

Betatron radiation

High Harmonic Generation (HHG)

Optics, spectrometers, detectors

5B - Applications

X-ray microcopy in the lab

Soft X-ray microscopy of cryo-fixated THP-1 Cells. Inner structures as well as the glycocalix are clearly visible.

Soft X-ray spectroscopy in the lab

Experimental setup

NEXAFS spectrum for a 1 μ m thick PET sample

Wachulak et al. Optics Express 26, 8260 (2018)

Spatially resolved HHG spectroscopy

LASERLAB Amsterdam

Measurement of transmission through a Ti/Si_3N_4 film 17-55 nm range.

Jansen et al., Optica 3, 1122 (2016)

Warm dense matter investigated using betatron radiation

6A - Two-dimensional Electronic Spectroscopy

Goal: increase the availability of **2D** spectroscopies to the users of Laserlab, by developing a suite of different experimental techniques coupled to data visualization and analysis tools.

Characterization of relaxation times and paths in <u>CdSe Nanorods</u>:

2D electronic spectroscopy and modeling

Understanding ultrafast dynamics in nucleobasis:

Ultrafast spectroscopy in the UV spectral range

6B - Main achievements

CDSE NANORODS

2DES + Global analysis:

- relaxation from high energy excitons to an intermediate state: 124-fs time constant
- relaxation to the *lowest exciton*: 217-fs time constant

Collaboration with Prof. Uri Banin

4-THIOURACYL

UV spectroscopy system:

- Sub-20 fs UV pulses at 270 and 330nm
- Evidence of an intermediate state mediating internal conversion

Experimental

SĒ

Collaboration with Prof. M. Garavelli and Ivo van Stokkum

R. Borrego-Varillas *et al.*, J. Am. Chem. Soc. **140**, 16087 (2018)

7A - LULI, France : Coherent Beam Combination update

CBC demonstrated with 19 passive fibers in the femtosecond regime

Laserlab Berlin spring 2017

- 49.5% combining efficiency
- 300 fs combined pulse
- $\lambda/60$ RMS phase stability

• First demonstration w/ 7 femtosecond high-power fiber amplifiers

Laserlab Garching spring 2018

- (46% @ B = 5 rad; 2 MHz)
- 216 fs combined pulse
- λ/55 RMS phase stability

A.Heilmann et al., "Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement" Opt. Exp. 26, 31542-31553 (2018)

Scaling to 61 fibers

- 96 W @ 46% combining efficiency (55MHz)
- 221 fs combined pulse
- λ/100 RMS phase stability Laserlab Florence Fall 2019

7B - RAL, UK: Fast Pointing Beam Stabilisation on Gemini

8A - Thin-disc and volume laser based mid-IR sources

Development of thin-disk and volume laser based pump lasers

- Moderate repetition rates up to a few kHz.
- High energy up to a few hundred mJ.

Implementation of pump lasers in OPCPAs

- Demonstrate the potential of the developed laser sources as pumps for OPCPA systems.
- Develop mid-IR sources in the 1.6-2.7 μm and 5-10 μm ranges.
- Applications in the study of ultra-fast phenomena

Highlights from: MPQ, IST, FVB-MBI

8B - Highlights: From pump development and OPCPA design to applications with mid-IR OPCPAs

Pump for OPCPA: Development of 100 mJ, 1030 nm Yb-based CPA completed. OPCPA design: KTA/MgO:LN based 5 mJ OPCPA at 3 μ m.

Pump for OPCPA: Development of 100 Hz, 300 mJ, 1030 nm Yb:YAG thin-disc amplifier. OPCPA: 40 mJ, < 8 fs at 800 nm.

2 μm OPCPA pumped by Yb:YAG amplifier at 1030 nm. Application: spatially resolved electro-optical sampling of beam focused with metasurface axicon.

9A - High-repetition rate, single-shot, measurement of the Carrier-to-envelope (CEP) offset phase

LUND UNIVERSITY

Two main approaches for CEP measurements of amplified laser pulses exist.

Stereo Above-Threshold Ionization (ATI)

f-2f interferometry

- Needs short pulses to be conclusive
- Complicated setup and analysis
- Absolute measurement

- Simple setup and analysis
- Octave-spanning spectrum required
- Indirect measurement
- Pulse energy to CEP coupling

200 kHz line camera as detector

9B - Single-shot, full repetition rate CEP measurements performed in Lund and at MBI

MBI OPCPA measured with Stereo ATI at 100 KHz

8)

Max-Born-Institut

Lund OPCPA measured with f:2f spectrometry at 200 kHz

D. Hoff et al., Opt. Lett. 43, 3850 (2018)

10A - Advanced Attosecond Working Stations for Material Science Studies

5 labs were involved

Laser Interactions and Dynamics Laboratory

Institut des Sciences Moléculaires d'Orsay

FO.R.T.H. - I.E.S.L.

Institute of Electronic Structure & Laser

Technical University of Munich

10B - Main Realisations

Finalized Plateforms

LIDYL: ATTOLAB completion: Two high rep-rate XUV-IR beamlines: 2
 mJ@10Hz & 15 mJ&1KHz, 23 fs, CEP

ISMO : COLTRIM End Station

FORTH : Long focal High Orde Harmonics beam line

TMU : Attosecond high photon flux beamline (moved from MPQ)

LOA: TW-class, few-cycle pulse laser system at 1kHz

Scientific Breakthrough (number of publication under preparation)

- LIDYL : Revealing attoecond photoionization dynamics in Argon Cooper minimas
- ISMO : Angle resolved RABBIT: XUV+IR ionization of Ar and Ne
- FORTH: more than 0.7 ·10¹⁴ photons/pulse in XUV through HHG using a double jet A. Nayak et al., Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses, Phys. Rev. A 98, 023426
- TMU: First absolute ionisation time from Electrons in iodine sub-monolayers deposited on a tungsten substrate: Ossiander, M. et al. Absolute timing of the photoelectric effect. Nature 561, 374–377 (2018)
- LOA : CEP effects in High Charge MeV electron beams

11A - Preparing laser accelerated proton beams for dose controlled irradiation studies

- Demonstrate mature performance of a laser proton accelerator beyond 50 MeV
- Demonstrate controlled dose delivery (and metrology / dosimetry)
- Explore new regimes with unique source characteristics (dose rate effects)

HELMHOLTZ

11B - Preparing laser accelerated proton beams for dose controlled irradiation studies

- Spatial and temporal pulse control
- Tailored plasma target conditions
- Complete online (on-shot) metrology
- Pulsed beam matching transport
- And pulsed beam dosimetry

Example of dose rate dependent tumor cell response

Example of energy increase by controlled target pre-expansion

12A -Targetry

- Targets come in many forms: gas, liquid, solid, vacuum
- LASERLAB covers all bases
- Opportunities to collaborate targets are used in almost all experiments – one group making a target for an experiment = joint activity
- One example of a joint activity:
 collaboration to develop a gas jet
 with an ultrashort density variation

12B - MUT – STRATH collaboration: Elongated gas puff target with a profiled gas density profile for attosecond bunch injection

Motivation and aim:

formation of target with a profiled gas density for laser-plasma attosecond electron bunch injection

Numerical simulations performed at STRATH

Target characterization measurements at MUT

